

A Step-by-Step Approach for Method Development to Generate a Successful HILIC Separation

Alan P McKeown amckeown@ace-hplc.com

Business Development Director

Advanced Chromatography Technologies Ltd

www.ace-hplc.com

© Advanced Chromatography Technologies Ltd . Reproduction or adaption in part or full is prohibited without permission.

Contents – Part 1

Part 1

- What is HILIC?
- Why Should I Use HILIC?
- Key Advantages
- ACE HILIC Columns
- HILIC Mobile Phases
- Hints and Tips
 - Column Equilibration
 - Sample diluent
 - Mobile phase preparation

Part 2

- Resolution, Selectivity & Why They Matter
- Simple Protocol-based Method
 Development Approach
- Example Caffeine and Related Polar Compounds

ACE HPLC / UHPLC Columns

What is HILIC?

- Hydrophilic Interaction Liquid Chromatography (HILIC)*
- Ideal for retention of poorly retained or not retained at all analytes in reversed phase. i.e. polar neutral and ionisable polar species
- HILIC works by forming a water layer surrounding the silica particle. Analytes can then partition between the organic bulk layer and the preferred water layer
- Mechanisms such as IEX and H-bonding may also contribute

* A. J. Alpert, J. Chromatogr., 499 (1990) 177.

HILIC Mobile Phases

- Bulk solvent = MeCN
- ~3% minimum aqueous required to hydrate the water layer around particles for partitioning.
- (MeOH (other protic solvents) in the bulk solvent may disrupt the water layer leading to reduced retention repeatability).

When Should Analysts Use HILIC?

- If known, an analyte's Log P value (measure of lipophilicity) can indicate whether HILIC is an option*:
 - Analytes with a Log P of ~ ≤ 0 are typically suitable for HILIC

2 Alternatively, elution before the caffeine peak retention time on an ACE C18 with gradient RPLC can be a reasonable 'rule of thumb'

Column = ACE Excel C18, 100 x 3.0mm, 2mm. Part number = EXL-101-1003 A = 10mM ammonium formate, pH 3.0 (aq) B = 10 mM ammonium formate, pH 3.0 in 9:1 v/v MeCN:H₂O Gradient = 5-100%B in 10 minutes ELSD detection, 0.4 mL/min, 30C, 10mL injection Analysed using VWR-Hitachi Chromaster600-ELSD

What Does HILIC Offer the Analyst?

- 1. HILIC can provide retention and / or separation of polar analytes such as metabolites, polar pharmaceuticals, polar pesticides etc.
- 2. HILIC provides orthogonal selectivity to RPLC.

Key Advantages of HILIC

- Highly suited for the retention of polar to very polar analytes
 - No need for ion pairing reagents or additives as with RPLC, (which can come with its own challenges)
- The high volume fraction organic solvent eluents used has been showed to enhance mass transfer and lower the C term contribution in the van Deemter equation
- The high organic content also can aid ionisation for MS detection
 - Ideal for desolvation, ion formation and enhanced signal response
- The acetonitrile bulk solvent has low viscosity which translates to lower backpressures
 - Enables the chromatographer to move to higher flow rates, smaller particle sizes and therefore higher plate count

Key Disadvantages of HILIC

- HILIC knowledge & experience is generally far lower than for RPLC with many analysts incorrectly using RPLC experience for HILIC
 - Key parameters less well understood
 - Stationary phase options far less
 - Operational guidelines are different to RPLC
- High volume fraction eluents can lead to challenges with solubility for hydrophilic analytes.
- Retention modelling can performed but predicting isocratic conditions from gradient models and vice versa has found to be unreliable (unlike RPLC)*. Conflicting success / failure has also been observed**.

Method Development: HILIC Stationary Phases

- HILIC stationary phases can be split into acidic, basic, neutral and 'other / novel' e.g. Zwitterionic / cyclodextrin etc.
- To maximise selectivity, it is helpful to consider HILIC stationary phases with different character

Changing Stationary Phase Exploits Selectivity

Different stationary phase mechanisms may affect elution order and move peaks around in the chromatogram

* Neue, O'Gara, Méndez "Selectivity in Reversed-Phase Separations: Influence of the Stationary Phase", J. Chromatogr. A 1127 (2006), 161-174

Stationary Phase Rationale - Selectivity

 Using a HILIC characterisation protocol with 54 polar analytes, Selectivity Descriptor values in HILIC mode were determined

 These data indicate that phases of acidic, neutral and basic character offer suitable differences for HILIC method development activities.

Influence of Eluent pH for Each Phase

More Complex Selectivity Relationships...

HILIC Stationary Phases With Different Selectivity

1. p-Aminobenzoic acid, 2. 4-Hydroxybenzoic acid, 3. Nicotinamide, 4. Acebutalol, 5. Adenine, 6. Mandelic acid, 7. Tyramine, 8. Atenolol, 9. 2-Deoxyguanosine

Mobile phase: 10 mM ammonium formate pH 4.7 in MeCN/H₂O (90:10 v/v), Flow: 1.5 mL/min, Detection: 254 nm, Temperature: 25 °C, Injection: 5 μ L,

Elution order

HILIC Method Development Flow Chart

Parameter	Comments	
Column	ACE HILIC-A, ACE HILIC-B and ACE	
	HILIC-N,	
	150 x 4.6 mm	
Gradient	A: 10 mM ammonium formate in	
mobile phase	MeCN/H ₂ O (96:4 v/v)	
	B: 10 mM ammonium formate in	
	MeCN/H ₂ O (50:50 v/v)	
	Ammonium formate is at pH 3.0, 4.7 or 6.0.	
Gradient		
screen		
Time	%В	
0	0	
15	100	
20	100	
21	0	
41	0	
Isocratic	10 mM ammonium formate in MeCN/H O	
mobile phase	(00.10 y/y)	
	Ammonium formato is at pH 2.0.4.7 at 6.0	
Elow roto	Animonium formate is at $p = 3.0, 4.7$ of 6.0.	
Detection	25 °C	
Detection	Dependent on sample	

Providing Help for HILIC Method Development

- HILIC knowledge & experience is generally far lower than for RPLC with many analysts incorrectly using RPLC experience for HILIC
 - Key parameters less well understood
 - Stationary phase options far less
 - Operational guidelines are different to RPLC

Understanding selectivity in HILIC allows rationale stationary phase and eluent pH choices

Screening samples with 3 x columns and 3 x eluent pH values explores the selectivity 'space'

(Removes initial 'tweaking'...the graveyard of method development)

HILIC Equilibration Discussion

- Equilibration is key for robust chromatography
- RPLC typically requires 10 column volumes for equilibration
- > Minimum of **50-60 column volumes** <u>initially</u> is required for **HILIC**
 - Recent work has shown subsequent equilibration much less (20 col vols?)
 - > For isocratic HILIC methods once the equilibration is complete, stable retention
 - For gradient HILIC methods <u>~10 column volumes</u> are required between injections for reproducible retention times / separation

Sample Diluent on ACE HILIC-N

- Sample solvent is very important in HILIC
- Too little MeCN can result in split peaks/poor peak shape (i.e. tyramine)
- Too much MeCN and the sample might not fully dissolve (i.e. hypoxanthine)

Gradient HILIC Mobile Phases – Concentrations & Gradients

Many MPA & MPB lines have differing concentrations: Actual concentration

- MPA = 96:4 v/v MeCN:10 mM ammonium formate pH 3.0
- MPB = 1:1 v/v MeCN:10 mM ammonium formate pH 3.0

Match the buffer concentration in MPA & MPB:

- MPA = 10 mM ammonium formate pH 3.0 in MeCN/H₂O (96:4 v/v) (10mM)
- **MPB** = 10 mM ammonium formate pH 3.0 in MeCN/H₂O (1:1 v/v)

Ionic strength gradients lead to poor retention reproducibility – especially in HILIC

(0.4 mM)

(5mM)

(10 mM)

HILIC Hints and Tips Overview

- Balance buffer concentration in MPA and MPB for reproducible retention
- Ensure adequate equilibration (>~60 column volumes) when first setting up the HILIC method for isocratic or gradient HILIC work
- Include ~20 column volumes equilibration to re-establish the hydration later for subsequent column use
- Don't use high water containing sample diluents...but do experiment for your application what is best with the column
- Protic solvents in your HILIC mobile phases may disrupt the water layer and give poor retention robustness
- Don't use inorganic salts (precipitation worry) or ion-pair reagents (disrupt hydration layer) in HILIC methods
- Store ACE HILIC columns in IPA for maximum column lifetimes

Contents – Part 1

Part 1

- What is HILIC?
- Why Should I Use HILIC?
- Key Advantages
- ACE HILIC Columns
- HILIC Mobile Phases
- Hints and Tips
 - Column Equilibration
 - Sample diluent
 - Mobile phase preparation

Part 2

- Resolution, Selectivity & Why They Matter
- Simple Protocol-based Method
 Development Approach
- Example Caffeine and Related Polar Compounds

Chromatographic Peak Resolution

Zhao, J.H. and P.W. Carr. Analytical Chemistry, (1999) 71, 2623-2632

Simple Method Development Approach

Overview of HILIC method development:

- Step 1: Assess analytes (if known)
- Step 2: Scouting runs up to three pH values, three stationary phases, 1 gradient run
- Step 3: Optimise gradient or isocratic, % organic, buffer concentration, temperature
- Step 4: Validate
- Step 5: Transfer / Implement

HILIC Method Development Flow Chart

Parameter	Comments	
Column	ACE HILIC-A, ACE HILIC-B and ACE	
	HILIC-N,	
	150 x 4.6 mm	
Gradient	A: 10 mM ammonium formate in	
mobile phase	MeCN/H ₂ O (96:4 v/v)	
	B: 10 mM ammonium formate in	
	MeCN/H ₂ O (50:50 v/v)	
	Ammonium formate is at pH 3.0, 4.7 or 6.0.	
Gradient		
screen		
Time	%В	
0	0	
15	100	
20	100	
21	0	
41	0	
Isocratic	10 mM ammonium formate in MeCN/H O	
mobile phase	(90.10 y/y)	
	Ammonium formato is at $pH = 0$, $d = 7$ or $f = 0$	
Flow rate	1.5 ml /min	
Tomporatura	1.0 mL/mll 25 °C	
Detection	20 C	
Detection	Dependent on sample	

Example – Caffeine and Related Compounds

- Good rule of thumb: If an analyte elutes before caffeine in reversed phase, HILIC might be suitable.
- Analytes: Having as much information as possible about the analytes of interest will help with method development. The Log P of caffeine and the related substances suggest they possess reasonable hydrophilicity therefore HILIC might be a suitable separation mode.

Example – Is HILIC Necessary?

Caffeine and related compounds (0.5% w/w) were chromatographed on an ACE C18 column using a generic gradient.

All analytes eluted before caffeine (Peak 1).

Two of the five analytes had low retention factor (k) and were unresolved.

Therefore HILIC might provide a suitable alternative to RPLC

Column: ACE 5 C18, 150 x 4.6 mm, Mobile phase: 10 mM ammonium formate pH 3.0 in MeCN/H₂O gradient – 5-95%MeCN in 15 mins, B: 10 mM ammonium formate pH 3.0 in MeCN/H₂O, Flow: 1 mL/min, Detection: UV, 275 nm, Injection: 2 μ L,

Example – Selectivity Preparation

Caffeine and related substances are polar neutral compounds, therefore pH 6.0 is not required. pH 3.0 and 4.7 on all three stationary phases will be screened using a generic gradient.

Example – Gradient Screening Conditions

Initial Column Equilibration: 80 column volumes for steady state

Sample:

25 mg/mL caffeine mixture with 0.5% w/w related substances in MeCN/H₂O (90:10 v/v)

Columns:

Mobile Phase A: Mobile phase B: Gradient: ACE HILIC-A, ACE HILIC-B and ACE HILIC-N (150x4.6mm, 5 μ m) 10 mM ammonium formate pH 3.0 & 4.7 in MeCN/H₂O (96:4 v/v) 10 mM ammonium formate pH 3.0, 4.7 in MeCN/H₂O (50:50 v/v)

Time	%B
0	0
15	100
20	100
21	0
41	0

Flow Rate:1.5 mL/minTemperature:25 °CDetection:UV, 275 nmInjection Volume:2 μL

Example – Gradient Screening

The screen suggests HILIC-N at pH 3.0 is should be developed further.

(1) Caffeine (2) Theophylline (3) Theobromine (4) Xanthine (5) Hypoxanthine

Example - Optimisation

Gradient or Isocratic?

Isocratic greatly retained peaks 4 and 5, but failed to resolve peaks 2 and 3. Therefore, isocratic is not possible with this sample.

Further optimisation must be performed using gradient analysis.

Example - Optimisation

Effect of Temperature?

Decreasing the temperature has increased the resolution between the critical pair (Peaks 2 and 3) to within acceptable limits for this separation.

Example - Final Method

⁽¹⁾ Caffeine (2) Theophylline (3) Theobromine (4) Xanthine (5) Hypoxanthine

Summary

- HILIC can provide alternative selectivity to reversed phase chromatography but can be mechanistically complex
- A screening protocol with complementary phases can be helpful
- Selectivity is the key to chromatographic resolution
- Eluent pH can be powerful in HILIC whether it is method development, screening or isolation activities
- Consider your sample and ensure adequate equil time

HILIC Method Development / Screening Protocol Article

CHROMATOGRAPHY November / December 2015

A Simple, Generally Applicable HILIC Method Development Platform Based Upon Selectivity

by Alan P. McKoren, Advanual Chromategraphy Technologia Ltd, 1 Terry Street, Abordon, Scotland ATES 1111 and com Bas boli um

Hydrophilic interaction chromatography (HUC) separations are gaining popularity across many industry sectors and application areas. Despite this, method development experience for many analysts is still low compared to reversed phase liquid chromatography (RPLC). In this work, a broadly applicable HUC method development screening platform is proposed. Depending upon the analytes to be screened, a maximum of three stationary phases and three eluent pil values are selected providing nine chromatograms for evaluation prior to next steps to achieve the method objective. An example HLIC method development activity for caffeine and related substances (as example polar restrict analytes) is shown.

and water enriched layer at the stationary

HLIC is highly suited to the analysis of polar

phase particle-eluant interface (9.11).

Introduction

Hydrophilic interaction chromatography (HUC) has been developing and evolving as a separator mode for retaining resultal and polar analytes poorly retained in reveneed-phase liquid chrometography (RPLC) since the early 1990s. Described as a technique employing a polar etationary phase (a.g. unbonded allica) with revenuedphase type eluerts (a.g. equecus organic mixtures) [1], HLIC is different practically and mechanistically from both normal and swanasd-phase liquid chromatography. Others have investigated and explored the different stationary phase and eluent selectivity for this expansion mode (2,3). Datafied studies into HLC separation mechanisms. have been described also have and are not the purpose of this declasion H-10, However, it is clear that mechanistically HEJC is complex. and provides multiple modes of interaction: between the analyte, stationary phase, eluent

to very polar analytes; an area that RPLC has typically achieved limited excess without the use of ion-pair reagents or additives: (both of which bring their own challenges). For this discussion, polar to vary polar analytes are defined as those compounds with a log P value (i.e. octanol - water partition coefficient) of approximately zero or lass. Alog P value to a reasonable rough guide to the lipophilicity of an analyte. Alog P value of zero or less indicates the analyte is highly water acluble or has significant hydrophilic properties and so more suited to a HLIC separation mode. The more Ipophilic an analyte, the more suited it is for RPLC. Log D data (partitioning of an analyte as a function of torisation at a specific eluent pHI can also help. The lower or more negative a log D value, the more loniesd and

HILIC Log P scale -4 -2 0 >> Charlesent Coffeine Arritrict-Env kg P = -0.13 log P = -2 39 log P = 4.9

polar the analyte indicating its autability for HILC separations. Of course, when dealing with unknown analytes, such data is not evalable and should method development analysts here enalyte solubility / sample diluard conciums there are recommendations and guidance available [12].

As a general rule of thumb, if an analyte elutes before calleine in RPLC (log P - zero), it may be better suited to a HIUC separation mode. Figure 1 shows a schematic continuum from HEJC to RPLC asparation modes with illustrative log P values and analytee. The area of overlap between the separation modes around caffeine typically causes the most discussion. In this area either mode may offer advantages - the choice is usually application driven.

HUC offers a number of attractive characteristics and complementary banefits to RPLC. Despite this (and whilst the eventeness and popularity of HLIC asparations from pass reviewed literature and symposia is more widespread and growing [13], the practical success and method development knowledge of HILIC remains some way behind RPLC. As with RPLC, there are a variety of approaches to HLIC method development that include: applying price knowledge of asparation conditions from related analytes, peer reviewed Iterature work. terative experiments, systematic screening asperiments or design of experiments protocols. All approaches have pros and core. Unless prior knowledge and asperiance of a compound or class is known, many analysts will apply a broad

A P McKeown, Chrom. Today, Nov / Dec 2015, 8-12

ACE HILIC Brochure: Pre-order / Launched at HPLC2017

http://www.ace-hplc.com/media/211813/ace_hilic_brochure.pdf

Thank You For Your Attention

info@ace-hplc.com

ACE® is a registered trademark of Advanced Chromatography Technologies Limited. ACE Excel™ and EBT™ are trademarks of Advanced Chromatography Technologies Limited acknowledges the registered and unregistered trademarks of Agilent Technologies Inc., Phenomenex Inc., Waters Corporation and Thermo Fisher Scientific and has no affiliation with any of these companies.