

A Streamlined Approach for Reversed-Phase Method Development using a Combination of Column Screening and Software Modelling

Alan P McKeown¹, Ed Faden² and Geoff Faden²

¹Advanced Chromatography Technologies Ltd, 1 Berry Street, Aberdeen, Scotland, AB25 1HF UK ²MACMOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

1. Introduction

- Method development can be a lengthy and expensive process defined by the separation goals and sample complexity.
- Efficient method development requires logical exploration of key chromatographic parameters affecting selectivity.
- Rationally designed method development strategies assess key parameters and allow well informed decision making

2. Screening Strategy with ACE Columns

> A screening strategy based on stationary phase and organic modifier has the most potential to streamline method development:

- Select mobile phase pH depending on analyte properties. (For unknown samples, start at low pH).

3. Method Optimisation with ChromSword 2.0

- > Once a suitable stationary phase/organic modifier is selected, the method needs optimising (gradient slope, % organic, temp etc.).
- ChromSword 2.0 computer assisted method development software can help to streamline the optimisation step.

From as few as 2 runs, ChromSword can model the separation.

leading to robust methods.

Isocratic Separations		Gradient Separations
	MOST	
- Column stationary phase	Influential	All parameters for isocratic
- pH (ionisable analytes only)		separations PLUS:
- Organic modifier type		
- % Organic modifier		- Gradient steepness
- Buffer selection		- Dwell volume
- Column temperature		- Column dimensions
- Buffer concentration	LEAST	
	Influential	

Adapted from 'Introduction to Modern Liquid Chromatography", 3rd Edition, Snyder, Kirkland, Dolan, 2010, p.29, Wiley & sons

0 5 10 15 20

Zhao, J.H. and P.W. Carr. Analytical Chemistry, (1999) 71 2623-2632

Stationary phase and organic modifier are the most powerful parameters to assess in method development.

Screen six ACE reversed-phase columns with different properties:

		Separation	Mechanism and Relativ	e Strength ¹	
Bonded phase	Hydrophobic Binding	π-π Interaction	Dipole-Dipole	Hydrogen Bonding	Shape Selectivity
E C18	* * * *	-	-	*	**
E C18-AR	***	*** (donor)	*	**	* * *
E C18-PFP	* * * *	*** (acceptor)	* * * *	***	* * * *
E SuperC18	* * * *	-	-	-	**
E C18-Amide	* * * *	-	**	* * * *	**/***
E CN-ES	***	*	***	**	*

- The ACE range consists of phases specifically designed to offer maximum selectivity differences – ideal for method development.
- > Thousands of potential separations can be automatically simulated to find a final method.
- Manual editing of conditions and simulation of associated chromatograms is also possible.
- In Reversed-Phase, ChromSword 2 can be used to optimise %organic, gradient time, pH, temperature.
- Also compatible with Normal Phase and Ion Exchange Chromatography.

4. Example: Triple API Column Screen

- > A triple API pharmaceutical sample containing 14 impurities was screened on the six ACE phases using both MeCN and MeOH as the organic modifier
- Columns: 6 x ACE Excel 2 µm, 100 x 3.0 mm
- System: VWR Hitachi ChromasterUltra Rs UHPLC with 6-column switching valve
- A1: 10 mM ammonium formate pH 3.0
- **B1:** 10 mM ammonium formate pH 3.0 in MeCN:H₂O 9:1 v/v
- **B2:** 10 mM ammonium formate pH 3.0 in MeOH:H₂O 9:1 v/v

Aspirin: 5 mg/mL

- Gradient: 5-95% B in 5 minutes
- **Temperature:** 40 °C
- Flow rate: 1.2 mL/min
- **Detection:** UV, 270 nm

5. Example: Triple API Column Screen - MeCN

6. Example: Triple API Column Screen - MeOH

The sample was then screened using methanol as the organic modifier.

Better retention and selectivity for the more hydrophilic analytes.

The screening approach provides multiple options to pursue for obtaining a full separation.

The ACE C18, C18-AR and C18-Amide all resolve 11 of

- Sample:
- Paracetamol: 3.3 mg/mL Caffeine: 0.75 mg/mL Impurities spiked at 0.1% (wrt aspirin)

POWER RUN THERMO READY

the 14 impurity peaks.

1. 2-Aminophenol, 2. Hydroquinone, 3. Theobromine, 4. Paracetamol, 5. Theophylline, 6. Paraxanthine, 7. 4-Hydroxybenzoic acid, 8. Caffeine, 9. 2-Acetamidophenol, 10. 2-Hydroxybenzoic acid, 11. Phenol, 12. Aspirin, 13. 4-Nitrophenol 14. 4-Chloroacetanilide, 15. 2-Nitrophenol 16. Acetylsalicylsalicylic acid, 17. Salsalate

7. Optimisation with ChromSword: Linear Gradient

- > The ACE Excel 2 C18-Amide, with methanol as the organic modifier, was selected as the best candidate for optimisation.
- The 5 minute screening gradient run was input into ChromSword.
- > 10 and 15 minute gradients were also run and input to generate the model.
- The separation was optimised and the optimum linear gradient was predicted.

inear Gradient		Gradient Profile
ChromSword Simulation	MAU Roal cample	t (mins.) %E
1.1 Simulated Chromatogram 1.0- 0.9- 0.8-	25- 20- 20-	9.0 100 10.0 100
0.7- 0.6- 0.5- 0.4-	15 10	# impurity peaks resolved 14/14

8. Optimisation with ChromSword: Step Gradient

- > The separation was further improved by using step gradients.
- ChromSword automatically generates a set of proposed step gradients.
- The resolution of peaks 4 and 5 was improved over the linear gradient method by giving this peak-pair priority in the optimisation algorithm.
- An additional gradient step was manually added to the end of the gradient table to reduce run time.
- > Only the original 3 input runs were required to optimise the separation.

9. Summary and Conclusions

- Screening a new sample on the six ACE phases with two different organic modifiers is a powerful way to explore selectivity in method development.
- Once the optimum stationary phase and organic modifier have been selected, the final method needs to be optimised.
- ChromSword 2.0 can accelerate method development by streamlining the optimisation stage.
- Method optimisation can be achieved using data from as little as two experimental runs.

The ACE ChromSword 2 Method **Development Kit** combines the six unique ACE phases with the ChromSword 2 software in one package.

