

Accelerating HPLC / UHPLC Method Development Strategies by Leveraging Selectivity: Influence of Unique C18-Based Phases

Alan P McKeown amckeown@ace-hplc.com

Business Development Director

Advanced Chromatography Technologies Ltd

www.ace-hplc.com

Outline

- What is selectivity?
- Method development workflows
- Maximizing selectivity through rational stationary phase design
- Selectivity diagrams and optimized method development workflows

What is Selectivity?

 Alpha (α) is the symbol used to denote the separation factor or separation selectivity between 2 adjacent peaks

- Selectivity can be thought of as 'peak spacing'
- Selectivity values should be > 1.0

Resolution, Selectivity, Efficiency & Retention

Selectivity (α) is the key to resolution and efficiency (N) boosts performance

Zhao, J.H. and P.W. Carr. Analytical Chemistry, (1999) 71, 2623-2632

__\\.

Which Factors¹ Affect Selectivity?

- Strongly influenced by physicochemical properties of the analyte, stationary phase, eluent etc
- From a practical perspective:

Isocratic Separations

MOST Influence

- Column stationary phase type
- pH (ionisable analytes only)
- Organic modifier type
- % Organic modifier
- Buffer selection
- Column temperature
- Buffer concentration

LEASTInfluence

Gradient Separations

All parameters for isocratic PLUS

Gradient steepness,

 $k^*(t_G, F, V_m, \Delta\Phi, M),$

$$k * = \frac{t_G F}{\Delta \Phi V_m M}$$

Dwell volume,

Column dimensions.

Method Development / Screening Workflow: Overview

Typically multivariate

- 1 column
- 1 temperature
- 1 pH
- 1 organic modifier
- 1 t_G
- $2 \times t_{G}$

- 1 column
- 2 temperatures
- 1 pH
- 1 organic modifier
- 2 x t_G
- 20C & 60C

- 1 column
- 2 temperatures
- 1 pH
- 2 organic modifier
- 2 x t_G

MeOH & MeCN

- ≥ 2 columns
- 2 temperatures
- 1 pH
- 2 organic modifier
- 2 x t_G

Alkyl chains eg C18, C8 Aromatic eg Phenyl, C18-AR pH 7 or C18-PFP

Polar eg C18-PFP, C18-Amide

- ≥ 2 column

- 2 temperatures

- 2 or 3 pH
- 2 organic modifier
- 2 x t_G

pH 2.5

pH 10.7

INCREASING COMPLEXITY...BUT KNOWLEDGE RICH

- Many potential runs to fully explore variables and their effects on retention and selectivity
- Would be helpful to reduce parameter options...

Scientific Led Stationary Phase Design: Aromatic Phases

Electron Donating Groups eg NH₂, NR₂, alkyl, OCH₃ OR, CH₃, Ar etc

 C_6H_6

Electron Withdrawing Groups eg NO₂, halides, NR₃+, CO₂H, CN, CO₂R, SO₃H, COH etc

Electron Rich Ring

Activity: π -donor (π -base)

Electron Deficient Ring

Activity: π -acceptor (π -acid)

How do we exploit these properties for new stationary phases?

C18+Phenyl = ACE® C18-AR

C18+PFP = ACE® C18-PFP

Both phases have multiple mechanisms of interaction, low bleed and are 100% wettable: i.e. maximize selectivity

Scientific Led Stationary Phase Design: Other Phases

Multiple mechanisms of interaction, low bleed and are 100% wettable: i.e. maximize selectivity

ACE® SuperC18™: Uniquely Designed To Exploit Eluent pH

Encapsulated Bonding Technology (EBT™) for Improved Chromatography and Stability

- Unique bonding technology protects the silica surface
- Extended pH range compatible silica-based columns
- Rational stationary phase design

Catechols and Resorcinols Separations

ACE Excel C18-Amide

Selectivity Descriptor*

Selectivity =
$$100 \times \sqrt{(1 - R^2)}$$

- Selectivity values from ~8 upwards indicate suitable changes in selectivity for method development.
- Large Selectivity values can be achieved with multiple parameter changes.

Diverse Analytes / Probes

 A mixture of 45 acidic, basic & neutral small molecule analytes were used that represent a broad range of physico-chemical properties.

 Challenging stationary phases with these probes gives an indication of chromatographic selectivity for each phase and between phases.

,

Low Selectivity Differences

- ◆ Selectivity values 0 to < ~8.</p>
- Little difference in analyte retention on the 2 phases therefore little scatter seen. High correlation.

 Typically observed when comparing <u>same phase type</u> (i.e. same mechanism) from different vendors.

Moderate Selectivity Differences

- ◆ Selectivity values > ~8 and < ~30.</p>
- Changes in analyte retention between the 2 phases observed. May include elution order changes. Scatter observed and correlation reduces.

Selectivity = 22

 Typically observed when changing a variable eg comparing different phases OR changing solvent.

Selectivity: Exploring Solid Core Bonded Phase Effects

SuperC18, low pH, MeOH vs SuperPhenylHexyl, low pH, MeOH

50x2.1mm, 2.5µm, gradient analysis, A= 20mM HCOONH₄, pH3 (aq), B= 20mM HCOONH₄, pH 3 in MeCN/water 9:1 v/v, 3-100%B in 7.5 mins, hold 100%B for 1.5 mins, 40°C, 0.40 mL/min, 254 nm. 1 amiloride, 2 benzamide, 3 3-hydroxybenzoic acid, 4 vanillin, 5 2-hydroxybenzoic acid, 6 benzoic acid, 7 methyl paraben, 8 p-cresol, 9 cortisone, 10 ethyl paraben, 11 dimethylpthalate, 12 piroxicam, 13 hydro

19 hexanophenone, 20 propylbenzene, 21 phenanthrene, 22 heptaphenone, 23 butylbenzene

cortisone-21-acetate, 14 ketoprofen, 15 ethylbenzoate, 16 toluene, 17 valerophenone, 18 mefenamic acid

Changes in peak spacing and elution order noted

______1

High Selectivity Differences

- ♦ Selectivity values > ~30.
- Significant changes in analyte retention and elution order between the 2 phases. Scatter observed.

Selectivity = 81

Typically observed when <u>changing multiple variables</u>.
 Or changing eluent pH (eg low vs high) with ionisable analytes in the sample. ← Column pH range limitations.

Selectivity Plot: Exploring Eluent pH With SuperPhenylHexyl

SuperPhenylHexyl, <u>low pH</u>, MeOH vs SuperPhenylHexyl, <u>high pH</u>, MeOH

Selectivity = 83

Significant changes in elution order noted

50x2.1mm, 2.5µm, gradient analysis, A1= 10mM HCOONH₄, pH3 (aq), B1= 10mM HCOONH₄, pH 3 in MeOH/water 9:1 v/v, A2= 0.1% NH₂, pH 10.7 (aq), B2= 0.1% NH₂, pH10.7 in MeOH/water 9:1 v/v, 3-100%B in 5mins, 100%B for 2mins, 40°C, 0.60 mL/min, 254 nm.

1. benzamide, 2 caffeine, 3 procainamide, 4 N-acetylprocainamide, 5 propiophenone, 6 toluene 7 remacemide, 8 ethylbenzene, 9 carvdilol, 10 nortriptyline, 11 clomipramine.

Degraded Sample With Unknown Number of Peaks

Selectivity: Changing Organic Solvent Type

Exploring selectivity with solvent type:

50x2.1mm, 3 μm, gradient analysis, 3-100%B in 5.0 mins, hold 100%B for 1.0 mins, 40°C, 0.60 mL/min, 254 nm.

^{1 3-}hydroxybenzoic acid, 2 methylphenylsulfoxide, 3 quinoxaline, 4 salicylic acid, 5 benzylcyanide,

^{6 1,2-}dimethoxybenzene, 7 ethyl paraben, 8 1,4-dimethoxybenzene, 9 bendroflumethiazide, 10 piroxicam, 11 benzylchloride, 12 thioanisole, 13 sulindac, 14 chrysin, 15 ibuprofen, 16 1,2,3-trichlorobenzene,

¹⁷ meclofenamic acid

Advanced Selectivity Method Development Platform #1

45 analytes, 3 stationary phases, 2 solvents

ACE C18

- Hydrophobic

ACE C18-AR

- Hydrophobic
- π-π interactions

ACE C18-PFP

- Hydrophobic
- π-π interactions
- Dipole-dipole
- Shape selectivity

Complementary Mechanisms of Interaction

Advanced Selectivity Method Development Platform #1

Workflow Schematic

- 3 columns
- 1 temperatures
- 1 pH
- 1 organic modifier
- 1 x t_G

C18, C18-AR, C18-PFP

- 3 column
- 1 temperatures
- 1 pH
- 2 organic modifier
- 1 x t_G

MeOH
MeCN

Information Rich Data

3 columns, 2 solvents method development / screening approach based on selectivity data

C18

Initial Acetaminophen UHPLC Screening Chromatograms

Conditions

A: 20 mM ammonium acetate pH 6.0

B: 20 mM ammonium acetate pH 6.0 in MeCN:water 9:1 v/v Gradient: 0-95% B in 10 mins., hold 2.5 mins, ramp down 0.5 mins.

Post time: 5 mins Inj. Vol.: 2 μL Temp: 40 °C

Flow rate: 1.2 mL/min

ACE Excel 2µm C18-AR 100 x 3.0mm

C18-AR

ACE Excel 2µm C18-PFP 100 x 3.0mm

Mechanism = Hydrophobicity + π - π + dipole-dipole + shape selectivity

Extended Selectivity Method Development Platform #2

45 analytes, 3 stationary phases, 2 solvents

ACE SuperC18

- Hydrophobic
- High pH stable

ACE C18-Amide

- Hydrophobic
- Phenolic selectivity
- Polar retention

ACE CN-ES

- Hydrophobic
- Dipole-dipole
- Polar retention

Complementary Mechanisms of Interaction

Workflow Schematic

- 3 columns
- 1 temperatures
- 1 pH
- 1 organic modifier
- 1 x t_G

SuperC18, C18-Amide & MeOH
CN-ES

MeCN

- 3 column
- 1 temperatures
- 1 pH
- 2 organic modifier
- 1 x t_G

MeOH
MeCN

Information Rich Data

3 columns, 2 solvents method development / screening approach based on selectivity data

45 analytes, 3 stationary phases, 2 solvents

Complementary Mechanisms of Interaction

ACE SuperC18: 45 analytes, 2 solvents, pH 2.5 & pH 10.7

SuperC18 Gives the Option to Explore a Wide pH Range to Tune Selectivity

Workflow Schematic

Information Rich Data Based on Selectivity

1 column, 2 solvent, 2 pH method development / screening approach based on selectivity data

ACE® SuperC18™: Exploring Selectivity with High / Low pH

Selectivity = 83 > Powerful For Method Development

Low / High pH Switching...

Screening platforms / method development systems

1. Nizatidine 2. Salbutamol 3. Amiloride 4. N-Acetylprocainamide 5. Quinoxaline 6. Methyl paraben 7. p-Cresol 8. Reserpine 9. Piperine

10. Toluene 11. Felodipine

*Equivalent to 18mM

Total Selectivity, Method Development: 6 Column Switcher

45 analytes, 6 stationary phases, 1 solvent, 1 low pH

Total 6 Column Method Development Platform Based Upon The Power of Phase Selectivity

CN-ES

_____3

Total Selectivity, Method Development: Screening Platform

Workflow Schematic

- 6 columns
- 1 temperatures
- 1 pH
- 1 organic modifier
- 1 x t_G

- 6 columns
- 1 temperatures
- 1 pH
- 1 organic modifier
- 1 x t_G

MeCN

MeCN

Information Rich Data

6 columns, 1 solvents method development / screening approach based on selectivity data

Total Selectivity, Method Development: Screening Platform

Total Selectivity, Method Development: 6 Column Switcher

45 analytes, 6 stationary phases, 2 solvents, 1 low pH

Total 6 Column Method Development Platform Based Upon The Power of Selectivity

3

Solid Core Particles: UltraCore Method Development Platform

- Silica based solid core particles
- SuperC18 and SuperPhenylHexyl bonded phases for alternative selectivity: hydrophobic / aromatic interactions.
- Encapsulated Bonding Technology provides inertness (sharp peaks) & protects the silica surface from eluent pH 1.5 – 11.0.

ACE UltraCore

__\\._

UltraCore Method Development Platform #4

ACE® UltraCore™ Method Development Platform

2 phases, 2 solvents & 2 eluent pH values to fully explore selectivity

UltraCore: Exploring Phase, Solvent & pH Selectivity

ACE UltraCore SuperC18, low pH, MeCN vs SuperPhenylHexyl, high pH, MeOH

Range of 50 Analytes To Describe Selectivity

Selectivity = 85 → Fully Explore The Selectivity 'Space'

سللا

UltraCore Method Development Platform #4

Workflow Schematic

- 2 columns
- 1 temperatures
- 1 pH
- 1 organic modifier
- 1 x t_G

SuperC18

SuperPhenylHexyl

- 2 columns
- 1 temperatures
- 1 pH
- 2 organic modifier
- 1 x t_G

MeOH MeCN

- 2 columns
- 1 temperatures
- 2 pH values
- 2 organic modifier
- 1 x t_G

pH 3 pH 10.7

Information Rich Data Based on Selectivity

2 UltraCore columns, 2 solvents, 2 pH method development / screening approach based on selectivity data

ACE® Method Development Kit Brochure

ACE Method Development Kits

Intelligent Solutions for Method Development

- . Highly cost effective ACE Method Development Kits are available for the same price as a single column!
- 4 different ACE Method Development Kits available from microbore (0.5mm id) through to analytical (4.6mm id) dimensions for rapid, systematic method development.
- Each kit contains carefully selected ACE phases which enables the power of selectivity to be fully exploited.
- . Each ACE phase provides different selectivity due to differing interactions.

	Bonded Phase	Separation Mechanism and Relative Strength ¹						
		Hydrophobic Binding	π-π Interaction	Dipole- Dipole	Hydrogen Bonding	Shape Selectivity		
ACE Advanced Method Development Kit (see pages 4-7)	ACE C18	****		- 2		**		
	ACE C18-AR	****	*** (donor)	*	**	***		
	ACE C18-PFP	****	*** (acceptor)	****	***	****		
ACE Extended Method Development Kit (see pages 8-11)	ACE SuperC18	****	-	12	-	**		
	ACE C18-Amide	****		**	****	**/***		
	ACE CN-ES	***	0.57	***	**	*		
ACE UltraCore Method Development Kit (see pages 12-14)	ACE UltraCore SuperC18	***	-		-	**		
	ACE UltraCore SuperPhenylHexyl	177	*** (donor)			***		
ACE Bloanalytical 300Å Method Development Kit (see pages 15-17)	ACE C18-300	**	- 1	127				
	ACE C4-300		-		-	-		
	ACE Phonyl-300	*	** (donor)	*	**	. 44		

Approximate value - determined by semi-quantitative mechanism weightings and/or by reference to other ACE phases using >100 characterising analytes.

FREE Method Development Support!

- . Not sure which ACE phase or kit will work best for your application?
- FREE Application Support and FREE Method Development Service
- Trust your method development to our experts and free up time for your other projects!
- Contact our expert method development team via info@ace-hplc.com or contact your local distributor

Learn More: www.ace-hplc.com

ACE® Method Development Kit Brochure (II)

	Bonded Phase	Separation Mechanism and Relative Strength ¹						
		Hydrophobic Binding	π-π Interaction	Dipole- Dipole	Hydrogen Bonding	Shape Selectivity		
ACE Advanced Method Development Kit (see pages 4-7)	ACE C18	***	-	-	*	**		
	ACE C18-AR	***	*** (donor)	*	**	***		
	ACE C18-PFP	***	*** (acceptor)	***	***	****		
ACE Extended Method Development Kit (see pages 8-11)	ACE SuperC18	***	-	-	-	**		
	ACE C18-Amide	***	-	**	***	**/***		
	ACE CN-ES	***	*	***	**	*		
ACE UltraCore Method Development Kit (see pages 12-14)	ACE UltraCore SuperC18	***	-	-	-	**		
	ACE UltraCore SuperPhenylHexyl	**	*** (donor)	*	**	***		
ACE Bioanalytical 300Å Method Development Kit (see pages 15-17)	ACE C18-300	**	-	-	*	*		
	ACE C4-300	*	-	-	-	-		
	ACE Phenyl-300	*	** (donor)	*	**	**		

¹ Approximate value – determined by semi-quantitative mechanism weightings and/or by reference to other ACE phases using >100 characterising analytes.

Overall Conclusions

- Selectivity is helpful in chromatography
- Understanding selectivity aids method development by focussing efforts on high impact variables
- It is possible to design stationary phases to maximize selectivity
- Screening columns with differing retention mechanisms is useful for method development
- Various optimized method development platforms based on selectivity have been described

Thank You For Your Attention

All ACE products are available globally

USA: http://www.mac-mod.com/