

Addressing ion suppression from HPLC columns

Matt James¹, Tony Edge¹, and <u>Geoff Faden²</u>

¹Avantor, Theale, Reading, Berkshire RG7 4PE, UK, ²MAC-MOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

1. Background

- LC-MS allows quantitative and qualitative measurement of the LC eluent.
- Electrospray ionisation (ESI) is the most commonly used interface between the LC and MS.
- Two fundamental processes for the technique:
- 1. Desolvation
- 2. Charge Transfer
- Efficiency of both processes (and therefore signal intensity) are impacted by co-eluting species resulting in:
- Ion suppression/enhancement
- Separation of components by LC helps reduce this.
- Signal intensity is also affected by:
- Mobile phase
- System background components
- Components bleeding from the LC column
- Often, the influence of the LC column bleed is not considered.
- This poster assesses the impact of different column stationary phase chemistries on MS signal intensity and specifically the comparison of short chain and novel long chain ligands.

2. Methods

Comparison between direct infusion of analytes into an LC eluent stream directed to the MS with and without a column, via a 6-port, 2-position integrated valve:

- LC Flow rate: 0.475 mL/min, Infusion flow rate: 0.025 mL/min, Temperature: ambient.
- Columns initially flushed with 95% organic (20 column volumes).
- MS optimisation performed for each analyte (3 x MRMs) & mobile phase. TIC (m/z 100-1,000) also recorded to monitor bleed.
- Initially, small molecules were assessed on Phenyl and C18-AR phases.
- 18 PFAS components (EPA 537.1 test mix) were then assessed.

3. Small molecules

- Presence of LC column results in higher signal suppression in higher organic conditions.
- Some enhancement of signal observed at low organic content (possibly due to retention of mobile phase background components on column).
 - Suppression effects observed were lower for the longer chain ligand (C18-AR).
- Supports the theory that increased stability of longer chain ligands leads to less bleed from column.
- Ligand bleed not observed on either phase, but background ion abundance was higher with the phenyl phase.

4. PFAS (Per/polyfluoroalkyl substances)

- Impact of LC stationary phase on signal intensity of 18
 PFAS compounds was assessed.
- Short- and long-chain ligands with same functionality compared.
- 2 mobile phases:
 - 1: MeOH: H_2O 9:1 v/v + 10 mM ammonium acetate
 - 2: MeOH: H_2O 1:1 v/v + 10 mM ammonium acetate
- To compare data, recorded data was normalised to recorded background signal and expressed as a percentage.
 - %_{long chain} %_{short chain} plotted (+ve result indicates higher response with long chain ligand).

Impact of mobile phase composition:

- With no column, PFAS response was up to 2x higher in high organic mobile phase.
- With chromatographic separation, longer chain ligands would result in elution under higher % organic conditions, providing further signal increase vs short chain ligands.

5. Conclusions

- Impact of the LC column on MS signal intensity was assessed for a variety of long- and short-chain stationary phase ligands.
- In general, longer chain ligands gave an improved signal response vs short chain ligands.
 - Particularly under highly organic eluent conditions.
 - Results suggest that this is largely due to ion suppression caused by increased bleed from shorter chain ligands.
- For PFAS, MS signals are improved under high organic conditions, further favouring use of stationary phases bonded with more retentive long chain ligands.
- The use of columns bonded with higher stability long chain ligands can potentially provide improved LC-MS sensitivity.