Are Sub-2 µm Superficially Porous Particles Needed for Small Molecules?

J. J. Kirkland, B. E. Boyes, W. L. Miles, and J. J. DeStefano

Advanced Materials Technology, Inc. 3521 Silverside Rd., Quillen Bld., Ste. 1-K Wilmington, DE 19810 USA

Are Sub-2µm SPP Needed for

Small Molecules?

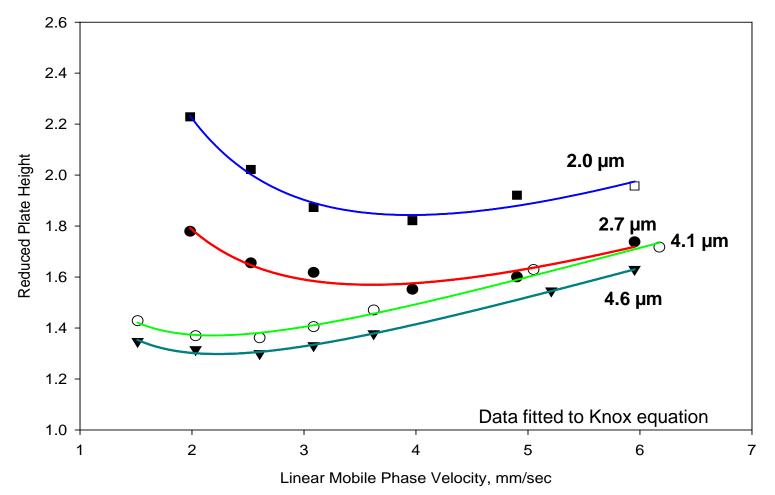
- Controversial question
 - •Theory predicts efficiency advantages of smaller particles
 - •SPP shown to have unusually high efficiency
 - •Sub-2µm SPP already available
 - •General consensus is "Yes"
 - Previous studies within AMT showed practical limitations
- •This presentation
 - •Authors' opinions on topic; no equations
 - •Large molecule separations not discussed

Upside of Using Sub-2µm Particles

- Smaller particles allow faster separations
 - High efficiency in short columns
 - Improved productivity
 - Short run times = less solvent usage
 - Sharper peaks for more sensitivity
- High number of theoretical plates possible in longer columns
 - Improved peak capacity for complex mixtures
- Keeping up with state-of-the-art technology

Downside of Using Sub-2µm Particles

- Specially designed (expensive) instruments required for optimum use
 - 400 600 bar often insufficient for optimum flow
 - Low-dispersion design required to minimize extra-column effects for highest efficiency
 - Small ID tubing and flow cells significantly add to operational pressure
 - Maintenance is expensive and often not userfriendly


Downside of Using Sub-2µm Particles

- Column frits with small pores (0.2 0.5µm) required to retain particles in columns
 - More subject to plugging than 2µm frits
 - Additional efforts needed to avoid particulate fouling (filter samples and mobile phases)
- Frictional heating of columns
 - More pronounced as d_p is reduced
 - Can result in band-broadening and changes in retention
 - ≤ 3 mm i.d. columns required to minimize frictional heating effects

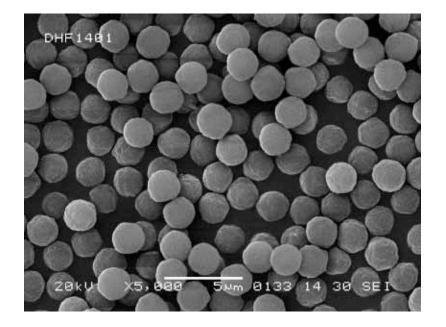
Downside of Using Sub-2µm Particles

- High pressure can cause changes in retention and selectivity vs low pressure separations
 - Problematic to convert separations made with small particles to columns of larger particles suited for routine analyses
- Columns may not exhibit expected efficiency or stability
 - Small particles harder to pack into homogeneous beds for highest efficiency

Effect of Particle Size on h vs v Plots

Reduced Plate Heights ($h = H/d_p$) get smaller as the particle size is <u>increased</u>, indicating more homogeneity in packed beds for the larger particles.

Are Sub-2µm SPP Needed for Small Molecules?


- Our conclusion: useful but not necessary
 - Upsides not sufficient to overcome the Downsides for most small molecule applications
 - Small molecules do not require shorter diffusion paths of small particle size SPP for adequate mass transfer
 - A compromise alternative is suggested

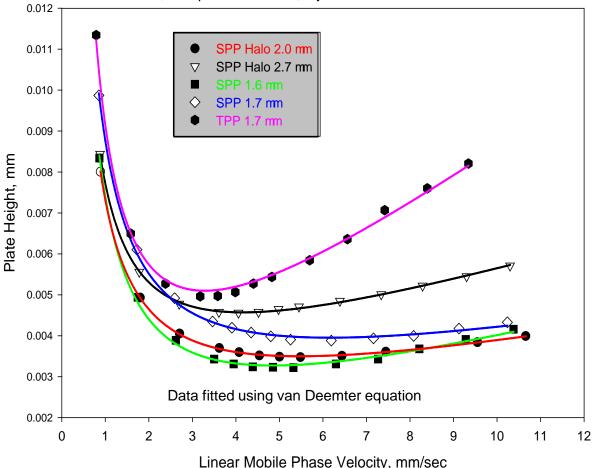
<u>An Alternative – 2µm SPP</u>

- Retains most of advantages of sub-2µm
 Higher efficiencies than sub-3µm SPP
- Minimizes disadvantages of sub-2µm

- Lower pressure requirements

2 µm HALO Particle Design

Solid Core 0.4 μm Shell with 90 Å pores

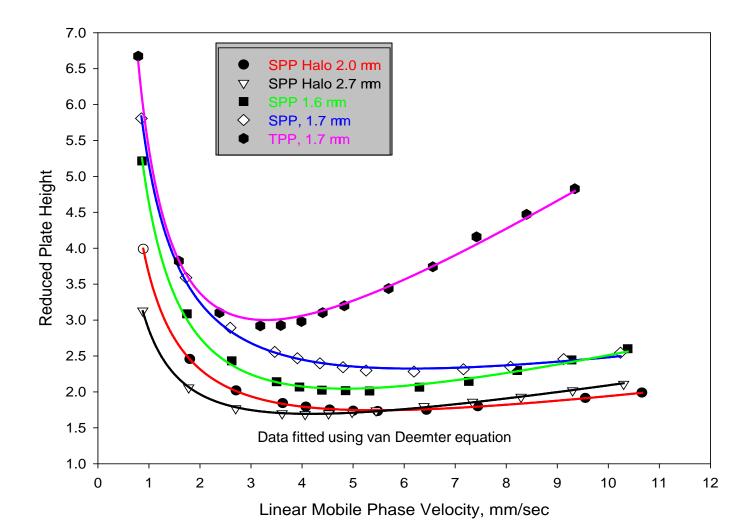

SEM image of 2 μm HALO particles

Mode – 2.006 Mean – 2.016 Median – 2.004 S.D. – 0.111um CV – 5.5%

Comparing van Deemter Plots (H)

Plate Height vs. Mobile Phase Velocity Plots

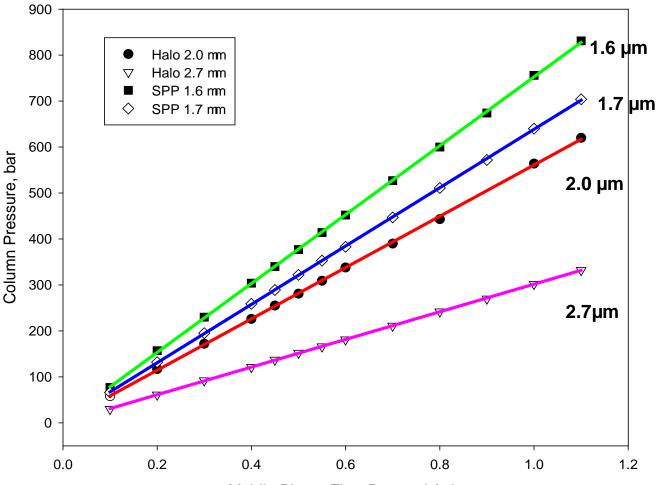
Columns: 50 x 2.1 mm; Instrument: Shimadzu Nexera; Solute: naphthalene Mobile phase: Halo - 50/50 ACN/water, k=6.3; 1.6 mm SPP - 48.5/51.5 ACN/water, k=6.3; 1.7 mm SPP - 47/53 ACN/water, k=6.2; 1.7mm TPP - 48.5/51,5 ACN/water, k=6.3 ; Temperature: 35 °C; Injection volume: 0.2 mL



Comparing van Deemter Plots (h)

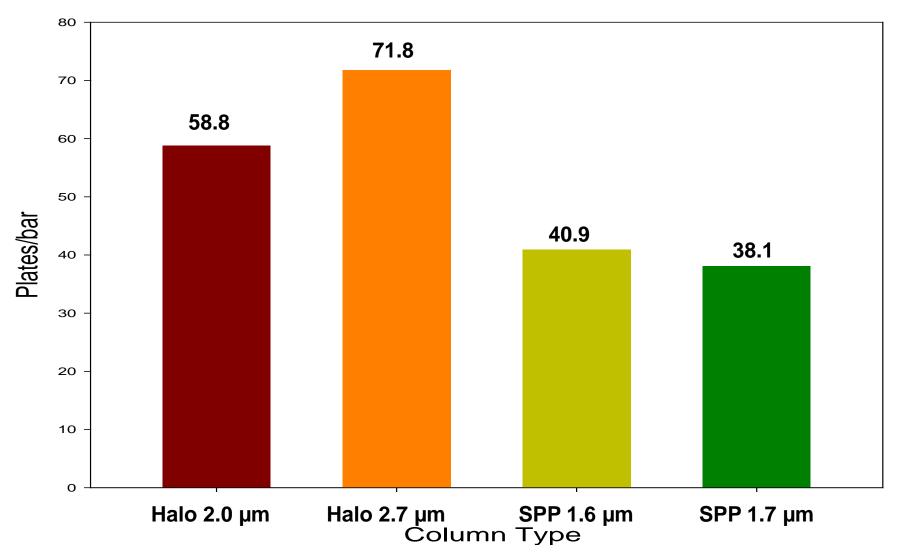
Reduced Plate Height vs. Mobile Phase Velocity Plots

Columns: 50 x 2.1 mm; Instrument: Shimadzu Nexera; Solute: naphthalene Mobile phase: Halo - 50/50 ACN/water, k = 6.3;


1.6 mm SPP - 48.5/51.5 ACN/water, k = 6.3; 1.7 mm SPP - 47/53 ACN/water, k = 6.2 1.7 mm TPP - 48.5/51.5 ACN/water, k=6.3; Temperature: 35 $^{\circ}$ C; Injection volume: 0.2 mL

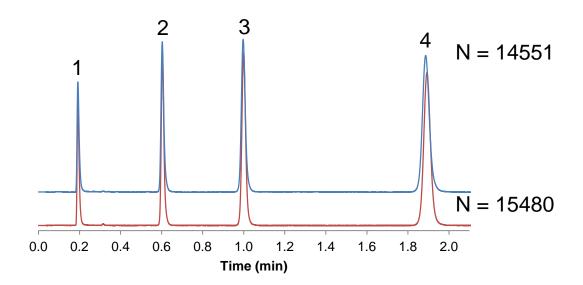
Pressure vs Flow

Mobile Phase/Column Pressure Plots


Columns: 50 x 2.1 mm, C18: Instrument: Shimadzu Nexera; Solute: naphthalene Mobile phase: Halo, 50/50 ACN/water, k=6.3; SPP 1.6 mm, 48.5/51.5 ACN/water, k=6.3 SPP 1.7 mm, 47/53 ACN/water, k=6.2; Temperature: 35 °C; Injection volume: 0.2 mL

Mobile Phase Flow Rate, mL/min

Plates per Bar


Columns: 50 x 0.21 mm C18; Instrument: Shimadzu Nexera; Solute: naphthalene Mobile phase: 50/50 - 47/53 ACN/water; Flow rate: 0.5 mL/min; Temperature: 35 °C

High Pressure Stability of HALO 2 C18

Columns: 2.1 x 50 mm Instrument: Shimadzu Nexera Injection Volume: 0.2 μ L Detection: 254 nm Temperature: 25 °C Mobile Phase A: water Mobile Phase B: acetonitrile Ratio A:B: 15/85 Flow rate: 0.5 mL/min Peak Identities:

- 1. Uracil
- 2. Pyrene
- 3. Decanophenone
- 4. Dodecanophenone

Column performance is maintained after injections at high pressure (950 bar) Red trace = before high pressure Blue trace = after high pressure

Column Stability Test

Columns: 50 x 2.1 mm, Halo 2.0 µm C18; Flow rate: 2.50 mL/min; Temperature: 25 °C Solute: naphthalene; Mobile phase: 85% ACN/15% water One sigma results

Columns	Average Injection Pressure, bar	Average Test Pressure, bar	Average Plate Number	Average % Plate Number Loss
<mark>6 - Halo 2.0 µm</mark>	980 ± 22	Before: 181 ± 4	15570 ± 330	
		After: 186 ± 4	14320 ± 550	8%

Conclusions

- Sub-2 µm SPP useful for R&D but less practical for most routine small molecule applications
- Larger SPP are less problematic for daily operation
- Columns of 2-µm SPP appear to be a good compromise of speed and efficiency with superior advantages for small molecule applications

Acknowledgements

Thanks go to Stephanie Schuster and Robert Moran who supplied much of the data with 2µm particles for this presentation