SMARTER CHROMATOGRAPHY

BIOAPPLICATIONS GUIDE

macmoo

INFORMATION & RESEARCH COLLECTED IN COLLABORATION WITH:

advancedmaterialstechnology

CONTENTS

ENZYMES	
Alpha-Chymotrypsinogen	4

GLYCANS

Dextran Ladder Standard in HILIC with Fluorescence Detection (II)	.5
PNGase-Released and Labeled N-Glycans By HILIC	.6
Procainamide-Labeled Dextrans on HALO Glycan Column	.7

MONOCLONAL ANTIBODIES

1000 Å C4 Protein Column for a High Resolution Separation of a Monoclonal Antibody	8
Effect of Acid Modifiers on Intact mAb Peak Shape	9
IdeS Digested mAb	10
IgG2 Selectivity Comparison on 1000 Å C4, ES-C18, and Diphenyl Phases	11
IgG2-B Monoclonal Antibody	12
LC-MS Analysis of Reduced IgG1 Monoclonal Antibody Fragments	13
LC-MS Analysis of Trastuzumab Using a 1000 Å C4 Column	14
NIST mAb	16
Reduced IgG1 (Trastuzumab) Retention Comparison	17
Trastuzumab and Large Molecular Mass Fractions	

NUCLEOSIDES & NUCLEOBASES

Adenine and Nucleosides using HILIC-MS Mode	19
Nitrogenous Bases and Nucleosides using HILIC-MS Mode	20
Nucleosides and Nucleobases	21
Nucleosides and Nucleobases on Penta-HILIC	22

NUCLEOTIDES

Monophosphate Nucleotides	23
Nucleic Acids and Disease Biomarker Profiling I	24
Nucleotides	25

OLIGONUCLEOTIDES

Analysis of Degraded Oligonucleotide Ladder Standard	26
MS-Friendly Oligonucleotide Separation	27
Oligonucleotide Ladder Standard (II)	28

PEPTIDES

Analysis of Apotransferrin Tryptic Digest	29
Apotransferrin Tryptic Digest	30
BSA Tryptic Digest Analysis using Column Coupling	32
Capillary Scale HILIC Separation of Deamidation Products of Trastuzumab	33
Comparison Separation of Seven Peptides	34
Deamidation Products of the NIST mAb	35
Detection of Oxytocin and Vasopressin in Serum by LC-MS-MS	36
Enhanced Selectivity for the Separation of Peptides Comparing Three Different 160 Å Bonded Phases	37
Enhanced Selectivity for Tryptic Digest using LC-MS	38
Fast Peptide Separation	39
High Temperature, Low pH Stability With a 2 μ m Peptide Column	40
Oxidation of NIST mAb Fragment	41
Peptide Six-Column Screen	42
Peptide Test Mix	43
Peptides - Selectivity Changes with Bonded Phase and Mobile Phase	44
Peptides - Varying pH with Phosphate Buffers	46
Rapid Separation of Peptides	47
Tryptic Digest of IgG	48
Tryptic Digest of IgG Using 500 Å Pores	49
Tryptic Digest of Lysozyme	50

PEPTIDES & PROTEINS

Gradient Separation of Peptides and Proteins	51
Peptide and Protein Mix	52
Peptides and Proteins	53

PROTEINS

Effect of Pore Size on Protein Peak Shape and Width	54
Effect of Silica Pore Size on Protein Separations	55
Effect of Temperature on the Separation of Proteins	56
Improved Protein Separations with HALO Protein C4 Compared to Totally Porous C4	57
Insulin Analogs in Clinical and Post-Mortem Analyses	
Medium Molecular Weight Proteins	59
Protein Separation on 1000 Å Column	60
Protein Test Mix	61
Whey Proteins from Whole Milk	62

ALPHA-CHYMOTRYPSINOGEN

Column: Part Number:	Avantor [®] ACE [®] L <u>BIO-251-1030</u>	IltraCore BIO C4	4, 500 Å, 2.5 μm, 3.0 x 100 mm
Mobile Phase:	A: 0.1% TFA in H B: 0.1% TFA in H	H ₂ O Acetonitrile/H ₂ C) 90:10 v/v
Gradient:	Time (min)	%B	
	0.0	40	
	10.0	50	

10.0	50
12.0	100
13.0	100
13.5	40

Flow Rate:	0.43 mL/min
Temperature:	30 °C
Injection Volume:	5 μL
Detection:	UV, 220 nm

DEXTRAN LADDER STANDARD IN HILIC WITH FLUORESCENCE DETECTION (II)

TEST CONDITIONS

Avantor® ACE® Excel Glycan, 100 Å, 3 μm, 2.1 x 150 mm <u>EXL-1116-1502</u>

Part Number: Mobile Phase:

Column:

A: 100 mM Ammonium formate in H₂O (pH 4.5)
B: Acetonitrile

Gradient:	Time (min)	%B
	0	75
	24.0	60
	24.3	40
	24.6	40
	24.9	75
	45.0	75

Flow Rate: Temperature: Injection Volume: Detection: LC Instrument: Dwell Volume: 0.5 mL/min 55 °C 1.5 μ L FLD $\lambda_{ex} = \lambda_{em} = 430$ nm VWR Chromaster with FLD 1950 μ L

PNGASE-RELEASED AND LABELED N-GLYCANS BY HILIC

TEST CONDITIONS

Column: Part Number: Mobile Phase:

Gradient:

Flow Rate:

Pressure:

Detection: Injection Volume:

Data Rate:

Flow Cell:

LC System:

Temperature:

Sample Solvent:

Response Time:

HALO BioClass Glycan, 90 Å, 2.7 μm, 2.1 x 150 mm <u>92922-705</u>

A: 50 mM Ammonium formate, pH 4.45B: Acetonitrile

80-55% B in 25 min

70/30 Acetonitrile/H₂O

2.5 µL semi-micro

Shimadzu Nexera

0.6 mL/min 60 °C

UV 300 nm

190 bar

3 μL

0.5 sec

3.3 Hz

Digestion of N-linked proteoglycans using PNGase F releases oligosaccharides, which can be reacted with an amine via Schiff base formation. The Schiff's base derivatives (imines) can be easily reduced to form stable amine derivatives for analysis.

Many amines have been applied for labeling glycans (Harvey, 2011, J. Chromatogr. B, <u>879</u>, 1196-1225). In this application brief, procainamide was chosen because of reported improvements in ESI-MS detection. (Klapoetke, et. al., 2010, J. Pharm. Biomed. Anal., <u>53</u>, 315-324)

TYPICAL LABELING CONDITIONS

1. Glycan in H_2O (up to 10% volume)

2. 90+% volume of:

- 0.4 M procainamide
- 1M sodium cyanoborohydride in 30% glacial acetic acid/70% DMSO

12-16 hr reaction at 37 °C SEC cleanup on Sephadex G-10 minicolumn Absorbance Detection @300 nm or Fluorescence with Ex 330/Em 380 nm

Ribonuclease B N-Glycans

Time, min

Procainamide (PAm)

PROCAINAMIDE-LABELED DEXTRANS ON HALO GLYCAN COLUMN

TEST CONDITIONS

Column: Part Number:	HALO BioClass Glycan, 90 Å, 2.7 μm, 2.1 x 150 mm <u>92922-705</u>				
Mobile Phase:	A: 50 mM Ammonium formate, pH 4.45B: Acetonitrile				
Gradient:	80–55% B in 25 min				
Flow Rate:	0.6 mL/min				
Temperature:	0° 00				
Pressure:	190 bar				
Detection:	UV 300 nm				
Injection Volume:	3 μL				
Sample Solvent:	70/30 Acetonitrile/H ₂ O				
Response Time:	0.5 sec				
Data Rate:	3.3 Hz				
Flow Cell:	2.5 μL semi-micro				
LC System:	Shimadzu Nexera				

A HALO Glycan column shows an efficient separation of procainamide-labeled dextran standards (Sigma-Aldrich 1:1 (w/w) of Part numbers 00268 and 00269) at 0.5 μ g/ μ L in 70% Acetonitrile/30% H₂O. Each lot of HALO Glycan packing is tested using this sample to assure lot-to-lot reproducibility and performance.

1000 Å C4 PROTEIN COLUMN FOR A HIGH RESOLUTION SEPARATION OF A MONOCLONAL ANTIBODY

TEST CONDITIONS

Column: Part Number:

Mobile Phase:

HALO BioClass Protein C4, 1000 Å, 2.7 μm, 2.1 x 100 mm 92712-614 A: H₂O, 0.1% TFA B: 80/20 Acetonitrile/H₂O, 0.085% TFA

	D. 00/20 Acctonitine/11			
Gradient:	Time (min)	%В		
	0.00	40		
	12.0	47.5		
Flow Rate: Pressure: Temperature: Injection Volume: Sample Solvent: Detection: Data Rate: Response Time: Flow Cell: LC System:	0.4 mL/min 210 bar 80 °C 2 μ L 70/30 H ₂ O/Aceto UV 280 nm, PDA 12.5 Hz 0.05 sec 1 μ L Shimadzu Nexer	onitrile a X2		

MONOCLONAL ANTIBODY STRUCTURE:

Image from the RCSB PDB (www.rcsb.org) of PDB ID 1HZH (E.O. Saphire, P.W. Parren, R. Pantophlet, M.B. Zwick, G.M. Morris, P.M. Rudd, R.A. Dwek, R.L. Stanfield, D.R. Burton, I.A. Wilson) (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design Science 293: 1155-1159)

Trastuzumab (MW ~148 kDa) is a monoclonal antibody used to treat breast cancer. Enhanced resolution of trastuzumab and its variants is demonstrated in the chromatogram below. The pores of the HALO 1000 Å C4 Protein particles accommodate larger biomolecules enabling superior separations at high temperatures.

EFFECT OF ACID MODIFIERS ON INTACT mAb PEAK SHAPE

TEST CONDITIONS

HALO BioClass Protein C4, 1000 Å, 2.7 μm, 2.1 x 150 mm <u>92712-714</u>					
A: H_2O , with 0.1% FA, DFA, or TFA as noted B: 80/20 Acetonitrile/ H_2O , with 0.1% FA, DFA, or TFA as noted					
Time (min)	%В				
0.00	40				
12.0	47.5				
0.4 mL/min 218 bar 80 °C 2 μ L 30/70 Acetonitrile/H ₂ O Detection: UV 280 nm, PDA 12.5 Hz 0.05 sec 1 μ L					
	HALO BioClass P <u>92712-714</u> A: H_2O , with 0.1 B: 80/20 Aceton Time (min) 0.00 12.0 0.4 mL/min 218 bar 80 °C 2 μ L 30/70 Acetonitril 12.5 Hz 0.05 sec 1 μ L Shimadzu Nexera	HALO BioClass Protein C4, 1000 92712-714 A: H_2O , with 0.1% FA, DFA, or T B: $80/20$ Acetonitrile/ H_2O , with Time (min) %B 0.00 40 12.0 47.5 0.4 mL/min 218 bar 80 °C 2 μ L 30/70 Acetonitrile/ H_2O Detection 12.5 Hz 0.05 sec 1 μ L Shimadzu Nexera X2			

STRUCTURES

Trifluoroacetic Acid (TFA)

Trastuzumab (~148 kDa) is a monoclonal antibody (mAb) used to treat breast cancer. TFA and DFA can be used as mobile phase additives instead of formic acid to provide much narrower and more symmetrical peaks, and to allow adjustments to retention and resolution among minor variants.

Time, min

IdeS DIGESTED mAb

TEST CONDITIONS

Columns:	HALO BioClass Protein Diphenyl, 1000 Å, 2.7 μm, 2.1 x 150 mm Part Number: 92712-726					
	HALO BioClass Protein ES-C18, 1000 Å, 2.7 μm, 2.1 x 150 mm Part Number: <u>92712-702</u>					
	HALO BioClass Protein C4, 1000 Å, 2.7 μm, 2.1 Part Number: <u>92712-714</u>	x 150 mm				
Mobile Phase:	A: H₂O/0.1% TFAB: Acetonitrile/0.1% TFA					
Gradient:	30-45% B in 10 min					
Flow Rate:	0.4 mL/min	The characterization of mAbs is critically important				
Temperature:	80 °C	for protein biotherapeutic drug development.				
Detection:	Fluorescence (280 nm ex, 350 nm em)	Although the analysis of the heavy and light chain can provide important information, often times				
LC System:	UPLC. I-Class site specific information is more critical and allows					
	for a more thorough characterization of the mAb.					
		IdeS, a cysteine protease, is often used to do a				
		partial digestion of the mAb, and by site specific				
		cleavage, provide heterogeneity information about				
		(Fab') fragment are produced which allows for a				
		thorough characterization of the Ec fragment The				
		separation of IdeS digested cetuximab was run on				

ANALYTES

1. Fc/2

the three stationary phases that are available on the 1000 Å HALO® particle. Slightly different selectivity and retention were observed for the Diphenyl, ES-C18, and C4 with all of them providing excellent resolution and peak shape for the fragments

of cetuximab.

IgG2 SELECTIVITY COMPARISON ON 1000 Å C4, ES-C18, AND DIPHENYL PHASES

TEST CONDITIONS

Columns:	HALO BioClass Protein C4, 1000 Å, 2.7 μm, 2.1 Part Number: <u>92712-714</u>	x 150 mm	There are available		
	HALO BioClass Protein ES-C18, 1000 Å, 2.7 μm Part Number: <u>92712-702</u>	ı, 2.1 x 150 mm	Each sho separatio		
	HALO BioClass Protein Diphenyl, 1000 Å, 2.7 µ Part Number: <u>92712-726</u>	m, 2.1 x 150 mm	this examined in the second se		
Mobile Phase:	A: 2:10:88 n-Propanol/Acetonitrile/H ₂ O + 0.1% Difluoroacetic acid (DFA)		is the mo ES-C18, a		
	B: 70:20:10 n-Propanol/Acetonitrile/H ₂ O + 0.1	% DFA	are recon		
Gradient: Flow Rate	16–26% B in 20 min 0.2 mL/min 80 °C		determin separatio		
Instrument:	Shimadzu Nexera	ANALYTES			
Detection: Injection Volume: Sample Solvent:	PDA 280 nm; 350 nm reference 2 μ L of 2 mg/mL denosumab H ₂ O (0.1% TFA)	1. lgG2-B 2. lgG2-B 3. lgG2-A/B	diculfido bridge		

There are currently three bonded phases available on HALO 1000 Å Fused-Core® particles – C4, ES-C18, and Diphenyl. Each shows unique selectivity for the separation of monoclonal antibodies. In this example, denosumab isoforms are resolved using a shallow gradient with the addition of n-propanol. Diphenyl phase is the most retentive phase, followed by ES-C18, and then C4. All three phases are recommended to be screened to determine which one yields the optimum separation for mAbs under investigation.

- 4. IgG2-A/B disulfide bridge isoforms of IgG2
- 5. IgG2-A
- 6. IgG2-A*

Note: Labels on ES-C18 chromatogram also apply to C4 and Diphenyl chromatograms.

IgG2-B MONOCLONAL ANTIBODY

TEST CONDITIONS

Column:	HALO BioClass Protein C4, 400 Å, 3.4 μm, 2.1 x 100 mm
Part Number:	93412-014
Mobile Phase:	 67/33: A/B to start A: H₂O ctg. 0.1% Trifluoroacetic acid (TFA) B: 80/20: Acetonitrile/H₂O/ (0.1% TFA)
Gradient:	33% B to 40%B in 10 minutes
Flow Rate:	0.25 mL/min
Initial pressure:	42 Bar
Temperature:	80 °C
Detection:	UV 280 nm, PDA
Injection Volume:	1.0 μL
Sample:	0.5 mg/mL IgG2-B treated with 100 mM DTT in 8 M guanidine-HCl $@$ 50 $^{\circ}\mathrm{C}$ for 35 minutes
Response Time:	0.08 sec
Flow Cell:	1 μL micro cell
LC System:	Shimadzu Nexera
Gradient delay volume:	~ 115 μL

The HALO Fused-Core Protein C4, 400 Å, 3.4 μ m stationary phase is useful for the separation of proteins up to 500 kDa in size. Shown here is the separation of light and heavy chains from a reduced IgG2-B antibody. Note the resolution of small peaks at the end of the chromatogram.

Special endcapping procedures ensure that the columns will be stable at elevated temperatures, even with aggressive mobile phases.

LC-MS ANALYSIS OF REDUCED IgG1 MONOCLONAL ANTIBODY FRAGMENTS

TEST CONDITIONS

Column: Part Number:	HALO BioClass Protein C4, 400 Å, 3.4 μm, 2.1 x 100 mm <u>93412-614</u>
Mobile Phase:	A: .5% (v/v) Formic acid with 20 mM Ammonium formate B: 45% Acetonitrile/45% Isopropanol/0.5% (v/v) Formic acid/9.5% H_2O with 20 mM Ammonium formate
Gradient:	29–32% B in 20 min
Flow Rate:	0.4 mL/min
Pressure:	20 bar
Temperature:	2° 08
Detection: Injection Volume:	280 nm and MS using 2 pps scan rate from 500 to 2000 m/z 2 μL of 2 $\mu g/\mu L$ reduced and alkylated IgG1
Sample Solvent:	0.25% (v/v) Formic acid in H ₂ O
MS parameters:	Positive ion mode, ESI at +4.5 kV, 400 °C heat block,
IC-MS System.	Shimadzu Nevera and LCMS-2020 (single quadrupole MS)
Lo mo oystem.	

HALO 400 Å C4 has the low pH and high temperature stability that is required to analyze reduced and alkylated IgG1 using MS-compatible mobile phase. The use of 80 °C enables improved peak shape while the high resolution MS allows complete analysis of the IgG1 fragments that are present.

Adapted from *J. Chromatogr. A* 1315 (2013) 118-126.

LC-MS ANALYSIS OF TRASTUZUMAB USING A 1000 Å C4 COLUMN

LC TEST CONDITIONS

Column: Part Number:	HALO BioClass Protein C4, 1000 Å, 2.7 μm, 2.1 x 150 mm <u>92712-714</u>			
Mobile Phase:	 A: 10 mM Difluoroacetic acid (DFA) in H₂O B: 10 mM Difluoroacetic acid in 10/90 H₂O/acetonitrile 			
Gradient:	32–42% B in 10 min			
Flow Rate:	0.35 mL/min			
Pressure:	184 bar			
Temperature:	80 °C			
Detection :	280 nm			
Injection Volume:	1 μL of 2 mg/mL trastuzumab (glycosylated/deglycosylated)			
Sample Solvent:	0.1% DFA in 70/30 $H_2O/acetonitrile$			
LC System:	Shimadzu Nexera			

MS TEST CONDITIONS

MS System:	Thermo Fisher Orbitrap VelosPro ETD
Scan Time:	6 μscans/250 ms max inject time
Scan range:	1800 to 4000 m/z
MS parameters:	Positive ion mode, ESI at +4.0 kV, 225 °C capillary

LC-MS analysis using a HALO 1000 Å C4 Protein column has been used to analyze two samples of the monoclonal antibody, trastuzumab: glycosylated and enzymatically deglycosylated. Minor variant structures are observed in both the glycosylated and deglycosylated monoclonal IgG (small peaks after main peak), indicating that the polypeptides are structural variants.

The glycosylation profile of therapeutic mAbs is an important characteristic that must be monitored throughout the manufacturing process. Determination of the mass of the deglycosylated IgG confirms the identity and integrity of the protein.

LC-MS ANALYSIS OF TRASTUZUMAB USING A 1000 Å C4 COLUMN (continued)

The structure of trastuzumab consists of two heavy chains and two light chains. Glycosylation occurs on the two heavy chains. One or more of the same or different carbohydrate moieties can be present on each heavy chain. Table 1 contains the combinations of sugars that correspond to the masses that were observed upon deconvolution of the mass spectrum on the previous page. The last column is the mass of the deglycosylated trastuzumab, which results from enzymatic cleavage of the glycans by PNGase F.

TABLE 1

GLYCANS	G0/	GOF	G0F,	/G0F	G1F/	/GOF	G1F/ G2F/	G1F, G0F	G1F,	/G2F	Deglyco Trastu	osylated zumab
	T^1	M1	Т	Μ	Т	М	Т	М	Т	Μ	Т	М
Trastuzumab	147911	147915	148057	148058	148219	148220	148381	148381	148543	148544	145167	145170
ΔMass (glyc) Trastuzumab	2744	2745	2890	2888	3052	3050	3214	3211	3376	3374	_	3

T = Theoretical mass

M = Measured mass

¹All masses reported in Daltons

DECONVOLUTION PARAMETERS:

Minimum Adjacent Charges 3 - 6 Noise Rejection 95% Confidence m/z Range 1800 - 4000 Mass Tolerance 20 ppm Charge State Range 40 - 120 Choice of Peak Model Intact Protein

15 [•]⊃ <u>table of contents</u> <u>visit our website</u> →

NIST mAb

TEST CONDITIONS

Column: Part Number:	Avantor® ACE® L <u>BIO-251-1030</u>	IltraCore BIO C4	4, 500 Å, 2.5 μm, 3.0 x 100 mm
Mobile Phase:	A: 0.1% TFA in I B: 0.1% TFA in <i>I</i>	H ₂ O Acetonitrile/H ₂ C) 9:1 v/v
Gradient:	Time (min)	%B	
	0	36	
	10	45	

	12	80
	14	80
	14.5	36
Flow Rate:	0.8 mL/min	

280 nm

Temperature:	80 °C
Injection Volume:	1 μL
Detection:	UV, 28

REDUCED IgG1 (TRASTUZUMAB) RETENTION COMPARISON

TEST CONDITIO	NS			STRUCTU	IRES
Column:	HALO BioClass Pro Part Number: 9 HALO BioClass Pro Part Number: 9 HALO BioClass Pro Part Number: 9	otein Diphenyl, 1000 <u>2712-726</u> otein C4, 1000 Å, 2. <u>2712-714</u> otein ES-C18, 1000 <u>2712-702</u>	Ο Å, 2.7 μm, 2.1 x 150 mm 7 μm, 2.1 x 150 mm Å, 2.7 μm, 2.1 x 150 mm	0 -o-	-SI-CH ₃
Mobile Phase:	A: $H_2O/0.1\%$ TFA B: Acetonitrile/ 0.	1% TFA		H	ALO Protein Diphenyl, 1000 Å
Gradient:	Time (min) 0.0 14.0	%B 30 40		O -o	CH_3 -Si CH ₃ CH ₃
Flow Rate: Temperature: Detection: Injection Volume: Sample Solvent: Data Rate: Response Time: Flow Cell: L C System:	0.4 mL/min 80 °C 280 nm, PDA 2 μL H ₂ O 12.5 Hz 0.25 sec 1 μL Shimadzu Novera	¥2			3C - CH ₃ Si-(CH ₂) ₁₇ - CH ₃ CH ₃
LC System:	Shimadzu Nexera	λZ		H/	ALU Protein ES-C18, 1000 A

Trastuzumab is a monoclonal antibody used to treat breast cancer. Enhanced resolution of trastuzumab's heavy and light chains is demonstrated in the chromatograms below using three different HALO® bonded phases. The 1000 Å pores of the HALO® Protein columns readily accommodate large biomolecules, and allow unrestricted pore access, narrower peaks and superior separations at high temperatures.

TRASTUZUMAB AND LARGE MOLECULAR MASS FRACTIONS

TEST CONDITIONS

Column:	Avantor® ACE® UltraCore BIO C18, 300 Å, 3.5 µm, 3.0 x 100 mm
Part Number:	<u>BIO-350-1030</u>
Mobile Phase:	A: 0.1% TFA in H ₂ O
	B: 0.1% TFA in Acetonitrile

Gradient:

B: 0.1% TFA in Acetonitrile	
Time (min)	%В
0	25
20	50
21	95
23	95
24	25
34	25

Flow Rate:	0.43 mL/min
Temperature:	60 °C
Injection Volume:	20 µL
Detection:	UV, 214 nm
System Dwell Volume:	525 μL

ADENINE AND NUCLEOSIDES USING HILIC-MS MODE

TEST CONDITIONS

Column:	Avantor® ACE® HILIC-N, 100 Å, 5 μm, 4.6 x 150 mm
Part Number:	HILN-5-1546U
Mobile Phase:	10 mM Ammonium formate pH 4.7 in Acetonitrile/H ₂ O (90:10 v/v)
Flow Rate:	1.5 mL/min
Temperature:	25 °C
Injection Volume:	5 μL
Detection:	(a) UV, 254 nm
	(b) Chromaster MSD
	SIM Positive ion mode [M + H] ⁺
LC Instrument:	VWR Hitachi Chromaster and 5610 MSD single quad MS

NITROGENOUS BASES AND NUCLEOSIDES USING HILIC-MS MODE

TEST CONDITIONS

Column:	Avantor® ACE® HILIC-N, 100 Å, 5 μm, 4.6 x 150 mm
Part Number:	<u>HILN-5-1546U</u>
Mobile Phase:	10 mM ammonium formate pH 4.7 in Acetonitrile/H ₂ O (90:10 v/v)
Flow Rate:	1.5 mL/min
Temperature:	25 °C
Injection Volume:	5 μL
Detection:	UV, 254 nm
	Chromaster MSD, SIM Positive ion mode [M + H]+
LC Instrument:	VWR Hitachi Chromaster and 5610 MSD single quad MS

NUCLEOSIDES AND NUCLEOBASES

Column:	Avantor [®] ACE [®] UltraCore Phenylhexyl, 95 Å, 3.5 μm, 3.0 x 100 mm
Part Number:	CORE-35G-1030
Mobile Phase:	10 mM ammonium formate pH 4.2 in H_2O
Flow Rate:	0.6 mL/min
Temperature:	40 °C
Injection Volume:	3 μL
Detection:	UV, 254 nm

NUCLEOSIDES AND NUCLEOBASES ON PENTA-HILIC

TEST CONDITIONS

Column:	HALO Penta-HILIC, 90 Å, 2.7 μm, 4.6 x 100 mm
Part Number:	<u>92814-605</u>
Mobile Phase:	8/92: H ₂ O/Acetonitrile with 0.01 M Ammonium formate, pH=6 (adj.)
Flow Rate:	1.5 mL/min
Pressure:	99 Bar
Temperature:	35 °C
Detection:	UV 260 nm, DAD
Injection Volume:	2.0 μL
Sample Solvent:	Mobile phase
Response Time:	0.02 sec
Flow Cell:	2.5 μL semi-micro
LC System:	Shimadzu Nexera

The new HALO Penta-HILIC stationary phase is an HPLC phase having a hydroxyl-rich surface for performing separations in the hydrophilic interaction chromatography mode. Here, a mixture of 13 nucleosides and nucleobases are separated isocratically in a short time with excellent resolution. These bonded superficially porous 2.7 µm HALO particles allow high resolution with modest back pressure.

STRUCTURES

Thymine

Uracil

Hypoxanthine

2'-Deoxyguanosine

Uridine

Adenosine

Adenine

Cytidine

Thymidine

2'-Deoxycytidine

Guanosine

2'-Deoxyadenosine

ANALYTES

- 1. Thymine
- 2. Uracil
- 3. Thymidine
- 4. 2-Deoxyadenosine
- 5. Adenine
- 6. Uridine
- 7. Adenosine
- 8. Hypoxanthine
- 9. Cytosine
- 10. 2-Deoxycytidine
- 11. 2-Deoxyguanosine
- 12. Cytidine
- 13. Guanosine

MONOPHOSPHATE NUCLEOTIDES

TEST CONDITIONS

Column:
Part Number:
Mobile Phase:
Flow Rate:
Temperature:
Injection Volume:
Detection:

Avantor® ACE® Excel NH₂, 100 Å, 3 μ m, 4.6 x 150 mm <u>EXL-1114-1546U</u> 10 mM Potassium dihydrogen phosphate pH 2.0 in Acetonitrile/H₂O (50:50 v/v) 1 mL/min 40 °C 10 μ L UV, 260 nm

Cytidine monophosphate

Adenosine monophosphate

Guanosine monophosphate

 <u>table of contents</u> <u>visit our website</u> →

macmod/

NUCLEIC ACIDS AND DISEASE BIOMARKER PROFILING I

TEST CONDITIONS

Column:

Flow Rate:

Detection:

Avantor® ACE® C18-PFP, 100 Å, 3 µm, 4.6 x 100 mm Part Number: ACE-1110-1046 Avantor® ACE® C18, 100 Å, 3 µm, 4.6 x 100 mm Part Number: ACE-111-1046 Mobile Phase: 33 mM potassium phosphate pH 6.2 with KOH/MeOH (88:12 v/v) 1 mL/min Temperature: Ambient UV, 260 nm

ANALYTES

- 1. dATP
- 2. dADP
- 3. dAMP
- 4. 5-Fluorodeoxyuridine
- 5. Adenine
- 6. Thymine
- 7. 2-Fluorodeoxyuridine
- 8. Adenine arabinoside
- 9. 2'-C-Methyladenosine
- 10. Adenosine
- 11. Deoxyadenosine
- 12. Cordycepin
- 13. 2-Fluoroadenine arabinoside
- 14. 2-Fluorodeoxyadenosine
- 15. 2-Fluoroadenosine

UV (mV)

2000

NUCLEOTIDES

TEST CONDITIONS

Colu	mn:	
Part	Number:	

HALO Penta-HILIC, 90 Å, 2.7 μm, 2.1 x 100 mm 92812-605

Mobile Phase:

A: 50/50: Acetonitrile/0.025 M Ammonium phosphate, pH=6

75/25: Acetonitrile/0.025 M Ammonium phosphate, pH=6

B: %В Time (min) 0.0 90 8.0 40

Flow Rate:	0.3 mL/min
Initial Pressure:	76 Bar
Temperature:	50 °C
Detection:	UV 260 nm, DAD
Injection Volume:	1.0 μL
Sample Solvent:	Mobile phase B
Response Time:	0.02 sec
Flow Cell:	1.0 μL micro
LC System:	Shimadzu Nexera
Data rate:	40 Hz

This separation demonstrates the utility of the HALO Penta-HILIC phase for analysis of nucleotides. Fused-Core technology gives high resolution separations at moderate pressures without the difficulties of using sub-2-micronparticle columns.

STRUCTURES

Adenosine Monophosphate

Guanosine Monophosphate

Adenosine Diphosphate

Guanosine Triphosphate

ANALYTES

- 1. Adenosine monophosphate (AMP)
- 2. Guanosine monophosphate (GMP)
- 3. Adenosine diphosphate (ADP)
- 4. Guanosine diphosphate (GDP)
- 5. Adenosine triphosphate (ATP)
- 6. Guanosine triphosphate (GTP)

ANALYSIS OF DEGRADED OLIGONUCLEOTIDE LADDER STANDARD

Column: Part Number:	Avantor [®] ACE [®] Excel Oligo, 100 Å, 1.7 μm, 2.1 x 100 mm <u>EXL-1715-1002</u>			
Mobile Phase:	A: 80 mM Trieth B: 80 mM Trieth	ylammonium ac ylammonium ac	cetate in H ₂ O (pH 7.0) cetate in Acetonitrile	
Gradient:	Time (min)	%В		
	0.00	12		
	6.95	15		
	8.34	15		
	8.45	12		
	15.40	12		
System Dwell Volume: Flow Rate: Temperature: Injection Volume: Detection:	204 μL 0.6 ml/min 60 °C 2.8 μL UV, 260 nm			

MS-FRIENDLY OLIGONUCLEOTIDE SEPARATION

0	2	4	6	8	10	min
-		· · · · ·				·
0						
20						
40						
60	1					
		2				
80			3			
100				4		
120 -					5	
mAU					6	
System Dwell Volume:	550 μL		5. 6.	35-mer 10. 40-mer 12.	6 kDa 1 kDa	
Detection:	UV, 260 nm		4.	30-mer 9.1	kDa	
Temperature:	60 °C		2.	20-mer 6.0	kDa kDa	
Flow Rate:	0.6 mL/min		1.	15-mer 4.5	kDa	
	25.0	30				
	17.5	30				
	17.0	50				
	15.0	50				
		30				
Gradient	B: 15 mM Dibuty	lamine + 25 mM 1,1,	1,3,3,3-Hexafluoropro	pan-2-ol (HFIF) in MeOH	
Mobile Phase:	A: 15 mM Dibuty	lamine + 25 mM 1,1,	1,3,3,3-Hexafluoropro	pan-2-ol (HFIF	P) in H₂O	
Column: Part Number:	Avantor [®] ACE [®] Exe EXL-1715-1002	cel Oligo, 100 A, 1.7	μm, 2.1 x 100 mm			
Column	Avantar® ACE® Ev	col Oligo 100 Å 17	$m 21 \times 100 mm$			

OLIGONUCLEOTIDE LADDER STANDARD (II)

Column: Part Number:	Avantor® ACE® Excel Oligo, 100 Å, 3 μm, 4.6 x 150 mm <u>EXL-1115-1546</u>				
Mobile Phase:	 A: 80 mM Triethylammonium acetate (TEAA) in H₂O (pH 7.0) B: 80 mM Triethylammonium acetate (TEAA) in Acetonitrile 				
Gradient:	Time (min)	%В			
	0.0	12			
	30.0	15			
	36.0	15			
	26.5	12			
	66.5	12			
Flow Rate: Temperature: Injection Volume: Detection:	1.0 mL/min 60 °C 20 μL UV, 260 nm				

1.	15-mer	4.5 kDa
2.	20-mer	6.0 kDa
3.	25-mer	7.5 kDa
4.	30-mer	9.1 kDa
5.	35-mer	10.6 kDa
6.	40-mer	12.1 kDa

ANALYSIS OF APOTRANSFERRIN TRYPTIC DIGEST

2 coupled HALO BioClass Peptide ES-C18, 160 Å, 2.7 µm, 2.1 x 100 mm

TEST CONDITIONS

Column:

	0	10	20	30	40	50	60	70	80
 40 20 20 30 30 50 40 20 0 	Approximate	peak capac	city= 360				nvelille	. ,	
rate		40 HZ		This sep tryptic of C18 col were co The use and aids at eleva protecte	paration show digest of apot umns, (2.7 μ upled to incr of elevated t s in resolution ted temperat ed silane in th	vs the separation ransferrin on cou m) in less than 9 ease the peak ca emperature import n. The excellent cure is a result of ne stationary pha	of the proc upled HALC 0 minutes. pacity. roves the p stability of the use of a se synthes	ducts from a) Peptide ES- Two columns eak sharpness this phase a sterically is.	
ent: Rate ure: erat ttior ion le S onse Cell: ster	e: cure: h: Volume: olvent: e Time: n:	B: H_2O/Ac 5% B to 60 0.5 mL/min 380 bar m 60 °C UV 215 nn 35 μ L Mobile pha 0.1 sec 2 μ L micro Agilent 120	cetonitrile: ()% B in 120 n aximum n, PDA ase A o cell 00 SL	(80/20) with 0.1	% TFA				
Num ng N e Pł	Iber: Iobile Phase:	92122-602 95/5 A: H ₂ O wi	2 th 0 1% Tri	fluoroacetic aci	d (TFA)				
	Iuming N Iuming N e Pl ent: Rate ure: erate tion Cell: ster rate 00 00 00 00 00 00 00 00 00 00 00 00 00	Approximate Approximate Approximate Approximate 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Aumber: 92122-60 ng Mobile Phase: 95/5 e Phase: A: H ₂ O wi B: H ₂ O/Ac B: H ₂ O/Ac ent: 5% B to 60 Rate: 0.5 mL/mi ure: 380 bar m erature: 60 °C tion: UV 215 nm ion Volume: 35 µL le Solvent: Mobile phase cell: 2 µL microstem: cell: 2 µL microstem: stem: Agilent 12 rate: 40 Hz	Aumber: $92122-602$ ng Mobile Phase: 95/5 e Phase: A: H ₂ O with 0.1% Tri- B: H ₂ O/Acetonitrile: 0 ent: 5% B to 60% B in 120 Rate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA ion Volume: 35 µL le Solvent: Mobile phase A onse Time: 0.1 sec Cell: 2 µL micro cell stem: Agilent 1200 SL rate: 40 Hz Approximate peak capacity= 360 40 40 40 40 40 40 40 40 40 4	Aumber: 92122-602 ng Mobile Phase: 95/5 a Phase: A: H ₂ O with 0.1% Trifluoroacetic acio B: H ₂ O/Acetonitrile: (80/20) with 0.1 ant: 5% B to 60% B in 120 minutes Rate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA ion Volume: 35 µL le Solvent: Mobile phase A onse Time: 0.1 sec Cell: 2 µL micro cell stem: Agilent 1200 SL rate: 40 Hz This sep tryptic of C 18 col were co The use and aid: at eleva protecte Approximate peak capacity= 360 0 0 0 0 0 0 0 0 0 0 0 0 0	humber: 92122-602 ng Mobile Phase: 95/5 e Phase: A: H ₂ O with 0.1% Trifluoroacetic acid (TFA) B: H ₃ O/Acetonitrile: (80/20) with 0.1% TFA ent: 5% B to 60% B in 120 minutes Rate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA ion Volume: 35 µL le Solvent: Mobile phase A onse Time: 0.1 sec Cell: 2 µL micro cell stem: Agilent 1200 SL ate: 40 Hz Approximate peak capacity= 360 0 0 0 10 20 30 40	lumber: <u>92122-602</u> g Mobile Phase: 95/5 e Phase: A: H ₂ O with 0.1% Trifluoroacetic acid (TFA) B: H ₂ O/Acetonitrile: (80/20) with 0.1% TFA ent: 5% B to 60% B in 120 minutes Nate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA ion Volume: 35 µL le Solvent: Mobile phase A onse Time: 0.1 sec Cell: 2 µL micro cell stem: Agilent 1200 SL ate: 40 Hz This separation shows the separation tryptic digest of apotransferrin on cou C18 columns, (2.7 µm) in less than 9 were coupled to increase the peak ca The use of elevated temperature impl and aids in resolution. The excellent: at elevated temperature is a result of protected silane in the stationary pha Approximate peak capacity= 360 0 0 0 0 0 10 20 30 40 50	lumber: 92122-602 g Mobile Phase: 95/5 e Phase: A: H ₂ O with 0.1% Trifluoroacetic acid (TFA) B: H ₂ O/Acetonitrile: (80/20) with 0.1% TFA ent: 5% B to 60% B in 120 minutes Rate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA ion Volume: 35 μL le Solvent: Mobile phase A nose Time: 0.1 sec Cell: 2 μL micro cell stem: Agilent 1200 SL rate: 40 Hz This separation shows the separation of the prod tryptic digest of apotransferrin on coupled HALC C18 columns, (2.7 µm) in less than 90 minutes. were coupled to increase the peak capacity. The use of elevated temperature improves the p and aids in resolution. The excellent stability of at elevated temperature is a result of the use of <i>i</i> protected silane in the stationary phase synthes Approximate peak capacity= 360 0 0 0 0 0 0 0 0 0 0 0 0 0	Jumber: 92/22-602 ig Mobile Phase: 95/5 a Phase: A: H ₂ 0 with 0.1% Trifluoroacetic acid (TFA) B: H ₂ 0/Acetonitrile: (80/20) with 0.1% TFA ant: 5% B to 60% B in 120 minutes Rate: 0.5 mL/min ure: 380 bar maximum erature: 60 °C tion: UV 215 nm, PDA on Volume: 35 µL le Solvent: Mobile phase A minse Time: 0.1 sec Pall: 2 µL micro cell stem: Agilent 1200 SL ate: 40 Hz This separation shows the separation of the products from a tryptic digest of apotransferrin on coupled HALO Peptide ES-C18 columns, (2.7 µm) in less than 90 minutes. Two columns were coupled to increase the peak capacity. The use of elevated temperature improves the peak sharpness and aids in resolution. The excellent stability of this phase a televated temperature is a result of the use of a sterically protected silane in the stationary phase synthesis. Approximate peak capacity= 360 0 0 10 20 30 40 50 60 70

Time, min

⊣ 90

PEPTIDES

APOTRANSFERRIN TRYPTIC DIGEST

APOTRANSFERRIN TRYPTIC DIGEST (continued)

TEST CONDITIONS

Column:	HALO BioClass P	HALO BioClass Peptide ES-C18, 160 Å, 2.7			
Part Number:	<u>92122-602</u> (2.1) <u>92122-702</u> (2.1)	<u>92122-602</u> (2.1 x 100 mm) <u>92122-702</u> (2.1 x 150 mm)			
Mobile Phase	A: H ₂ O with 0.19 B: 80/20 Aceton	A: H_2O with 0.1% TFA B: 80/20 Acetonitrile/ H_2O with 0.1% TFA			
Gradient A:	Time (min)	%B			
	0	5			
	60	60			
Gradient B:	Time (min)	%В			
	0	5			
	180	60			
Gradient C:	Time (min)	%B			
	0	5			
	270	60			
Flow Pato	$0.4 \mathrm{ml}$ /min				
Temperature:	60 °C				
Detection:	UV 215 nm, PDA	Injection			
Volume:	10 µL	10 μL			
Sample Solvent:	H ₂ O	H ₂ O			
Data Rate:	40 Hz				
Response Time:	0.05 sec				
Flow Cell:	1 μL	1 μL			
LC System:	Shimadzu Nexera X2				

The chromatograms on the preceding page show a comparison of an apotransferrin tryptic digest sample analyzed on three different lengths of HALO® Peptide ES-C18 columns: a single 2.1×100 mm, two 2.1×150 mm columns in series, and three 2.1×150 mm columns in series. The insets show examples of the improved performance obtained using longer column lengths along with longer gradient times for demanding samples. Resolution increases of approximately 70% and 110% are achieved by increasing column length by 3-fold and 4.5-fold respectively.

Gradient times of 60, 180 and 270 minutes were used for the top, middle and bottom chromatograms, respectively.

Lower pressures afforded by both 2.7 and 5 μ m HALO[®] Peptide particles allow two or more columns to be used in series for additional resolution and peak capacity for challenging peptide mapping analyses. HALO[®] Peptide ES-C18 is also available in 2 μ m particle sizes in 2.1 and 3.0 mm IDs up to 150 mm length for additional options in run time and peak capacity.

31 ⁽⁾ table of contents visit our website →

μm

PEPTIDES

BSA TRYPTIC DIGEST ANALYSIS USING COLUMN COUPLING

Column:	3 coupled Avantor® ACE® UltraCore SuperC18, 95 Å, 2.5 μm, 2.1 x 150 mm
Part Number:	<u>CORE-25A-1502U</u>
Mobile Phase:	A: 0.05% TFA in H_2O B: 0.05% TFA in Acetonitrile
Gradient.	

aradient.	Time (min)	%В
	0	10
	90	40
	120	65
	125	95
	130	95
	132	10
	180	10
Flow Rate: Temperature: Injection Volume: Detection:	0.21 mL/min 60 °C 20 μL UV, 214 nm	

PEPTIDES

CAPILLARY SCALE HILIC SEPARATION OF DEAMIDATION PRODUCTS OF TRASTUZUMAB

29.26 min

1273.55157 m/z (M+2H)

TEST CONDITIONS

HALO Penta-HILIC, 90 Å, 2.7 μm, 0.5 x 150 mm 98215-705

Mobile Phase:

Part Number:

A: 50 mM Ammonium formate in H₂O B: Acetonitrile/0.1% Formic acid

Gradient:

1.2e5

Intensity, counts

Column:

Time (min)	%B		
0.0	80		
4.0	80		
64.0	48		

27.32 min

1273.07401 m/z (M+2H)

1273 07401

Flow Rate: Pressure: Temperature: Detection: **Injection Volume:** Sample Solvent:

LC System: MS System: 12 µL/min 123 bar 60 °C FSI+ 1 uL 50 mM Tris-HCI /1.5 M Guanidine-HCI, 0.5% Formic acid Thermo Ultimate 3000 Thermo Orbitrap Velos

MS CONDITIONS

Spray Voltage (kV): 3.8 Capillary temperature: 300 °C Sheath gas: 40 Aux gas: 10 RF lens: 50

ANALYTES

Peptide fragments of **GFYPSDIAVEWESNGQPENNYK** 1.m/z= 1273.07401 2.m/z= 1273.55157 3.m/z= 1273.55353

> The capillary HALO® Penta-HILIC column facilitated coupling of microflow LC conditions of 12 µL/ min and a higher organic HILIC gradient separation. The column's high resolution capabilities resolved similarly charged species required for examining peptide deamidation and isomerization products of Asn, Asp, and isoAsp forms of a peptide fragment of a trastuzumab tryptic digest.

10.0

88

COMPARISON SEPARATION OF SEVEN PEPTIDES

DEAMIDATION PRODUCTS OF THE NIST mAb

2

TEST CONDITIONS

Column:	HALO BioClass Peptide ES-C18, 160 Å, 2.7 μm, 2.1 x 100 mm					
Part Number:	<u>92122-602</u>	<u>92122-602</u>				
Mobile Phase:	A: H ₂ O/0.1% Forn B: Acetonitrile/0.2	A: H ₂ O/0.1% Formic acid B: Acetonitrile/0.1% Formic acid				
Gradient:	Time (min)	%B				
	0.0	2				
	45.0	40				
	45.5	80				
	48.0	80				
	48.5	2				

55.0

MS CONDITIONS

Spray Voltage (kV):	4.0
Capillary temperature:	300 °C
Sheath gas:	40
Aux gas:	10
RF lens:	50

Deamidation is a reaction in which an amide functional group in the side chain of the amino acids asparagine or glutamine is removed or converted to another functional group. Deamidation products are of increasing importance in proteomics because they can alter a protein's structure, or possibly its function and stability, resulting in degradation. This is especially of interest in monoclonal antibody (mAb) development as well. The HALO[®] ES-C18 has the high effeciency necessary to separate the deamidation products of the NIST mAb.

PEPTIDES

DETECTION OF OXYTOCIN AND VASOPRESSIN IN SERUM BY LC-MS-MS

TEST CONDITIONS

Avantor [®] ACE	® C18-300, 3	3 μm,	2.1 x	50	mm
Part Number:	ACE-211-05	<u>502</u>			

Mobile Phase:

A: 0.1% Formic acid in H_2O B: 0.1% Formic acid in Acetonitrile

Gradient:

Column:

 Time (min)
 %B

 0.0
 10

 1.5
 33

 1.6
 10

Flow Rate: Temperature: Injection Volume: Detection:

MS Instrument:

40 °C 10 μL Positive ion mode ESI, MRM Desolvation temperature: 500 °C Ion source temperature: 150 °C XEVO TQ-S triple quad MS

0.4 mL/min

CONTRACTOR CHARACTER CHROMATOGRAPHY

PEPTIDES

ENHANCED SELECTIVITY FOR THE SEPARATION OF PEPTIDES COMPARING THREE DIFFERENT 160 Å BONDED PHASES

Column:	HALO BioClass Peptide ES-C18, 160 Å, 2.7 μm, 2.1 x 150 m Part Number: <u>92122-702</u>	m
	HALO BioClass Peptide ES-CN, 160 Å, 2.7 μm, 2.1 x 150 mn Part Number: <u>92122-704</u>	1
	HALO BioClass Peptide Phenyl-Hexyl, 160 Å, 2.7 μm, 2.1 x 1 Part Number: <u>92112-706</u>	50 mm
Mobile Phase:	A: 0.1% Formic acid in $H_2O + 10$ mM Ammonium formate B: 50/50 n-Propanol/ $H_2O + 0.1\%$ Formic acid + 10 mM Amn	nonium formate (pH: 3.45)
Flow Rate:	0.4 mL/min	
Temperature: Detection: Injection Volume: Sample Solvent: Response Time: Data Rate: LC System:	60 °C UV 220 nm, PDA 2 μ L H ₂ O, 0.1% TFA 0.24 sec 12.5 Hz Shimadzu Nexera Flow Cell: 1 μ L	The initial separation using a HALO 160 Å ES-C18 column showed inadequate resolution of peaks 5 and 6. The same separation was attempted on a 160 Å ES-CN column which provided improved resolution of peaks 5 and 6, but resulted in coelution of peaks 3 and 4. The HALO 160 Å Phenyl-Hexyl column delivered
Data Rate: LC System:	12.5 Hz Shimadzu Nexera Flow Cell: 1 μL	provided improved resolution of peaks 5 and 6 but resulted in coelution of peaks 3 and 4. The HALO 160 Å Phenyl-Hexyl column delivered excellent resolution between both peak pairs.

- ANALYTES
- 1. Tyr-Tyr-Tyr
- 2. Angiotensin II
- 3. Angiotensin 1-12
- 4. Melittin
- 5. Sauvagine
- 6. β-Endorphin

ENHANCED SELECTIVITY FOR TRYPTIC DIGEST USING LC-MS

TEST CONDITIONS

FAST PEPTIDE SEPARATION

TEST CONDITIONS

Column:	HAL
Part Number:	<u>9112</u>
Mobile Phase:	A: (B: (
Flow Rate:	2.2 r
Gradient:	Hold 12.5
Initial pressure:	556
Temperature:	60 °(
Detection:	UV 2
Injection Volume:	0.5 µ
Sample Solvent:	Mob
Response Time:	0.02
Data Rate:	200
LC System:	Shim
Flow Cell:	1 μL

HALO BioClass Peptide ES-C18, 160 Å, 2 µm, 3.0 x 50 mm 23-402 0.1% Trifluoroacetic acid in H₂O 0.1% Trifluoroacetic acid in 80/20 Acetonitrile/H₂O mL/min at 12.5% B for 0.1 min; 6% B to 63% B from 0.1–1.0 min bar С 215 nm, PDA μL ile phase A 5 sec Ηz nadzu Nexera X2 1 μι

A one-minute separation of a mixture of peptides and small proteins is demonstrated on a 2 μ m HALO Peptide ES-C18 column. Separations can be run at high flow rate in order to maximize sample throughput.

HIGH TEMPERATURE, LOW PH STABILITY WITH A 2 μm PEPTIDE COLUMN

TEST CONDITIONS

Column: Part Number: Mobile Phase: Flow Rate: Gradient: Initial pressure: Maximum pressure: Temperature: Detection: Injection Volume: Sample Solvent: Response Time: Data Rate: LC System: Flow Cell:

HALO BioClass Peptide ES-C18, 160 Å, 2 µm, 2.1 x 100 mm 91122-602 A: 0.1% Trifluoroacetic acid in H₂O B: 0.1% Trifluoroacetic acid in 80/20 Acetonitrile/H₂O 0.5 mL/min 6% B-54% B in 10 min 395 bar 417 bar 60 °C UV 215 nm, PDA 0.5 μL Mobile phase A 0.025 sec 40 Hz Shimadzu Nexera X2 1 uL

The sterically-protected C18 phase on the 2 μ m HALO Peptide column enables high temperature stability with low pH mobile phases. The replicate injections were stopped at injection 480 (15,500 column volumes). The column is expected to have a lifetime of ~ 1000 injections, depending on the type of sample and conditions used.

ANALYTES	MW (g/mol)
1. Gly-Tyr	238
2. Val-Tyr-Val	380
3. Met-enkephalin	574
4. Angiotensin II	1,046
5. Leu-enkephalin	556
6. Ribonuclease A	13,700
7. Bovine Insulin	5,733

.

7

OXIDATION OF NIST mAb FRAGMENT

TEST CONDITIONS

Column:

Gradient:

Part Number:

HALO® Penta-HILIC, 90 Å, 2.7 μm, 0.5 x 150 mm <u>98215-705</u>

Mobile Phase:

A: 50 mM Ammonium formate, pH 4.4 B: 0.1% Formic acid in Acetonitrile

Time (min)	%B
0.0	80
4.0	80
55.0	48
59.0	48
63.0	80
70.0	80

MS CONDITIONS

lon mode:	Positive
Aux gas:	2 arbitrary units
Sheath gas:	4 arbitrary units
Sweep gas:	0 arbitrary units
Rf lens:	55 V
Heater temp:	225 °C
lon transfer tube:	275 °C
Capillary Voltage:	3.5 kV

Flow Rate: Pressure: Temperature:

80 °C (Detection:+ESIInjection Volume:5.0 μLSample Solvent:70% ALC System:ShimadMS System:Therm

60 °C (standard) 80 °C (oxidized) +ESI 5.0 μL 70% Acetonitrile, 30% H₂O Shimadzu Nexera X2 Thermo LTQ VELOS PRO

50 µL/min

158 bar

Post-translational modifications (PTMs), such as oxidation, are a critical variable that must be accounted for during protein analysis. Frequently, the minor mass shifts associated with these modifications are too small to be resolved during intact protein analysis, due to the charge envelope produced by large proteins, such as monoclonal antibodies (mAbs). However, chromatographically, these compounds will have a difference in retention time relative to the native, and can be separated before getting to the detector. Peptide analysis is an important method of characterization for mAbs because, in addition to revealing modifications such as oxidation, it can provide valuable insight into additional post-translational modifications, which may not be evident during intact mass analysis. In this experiment, the digested NIST mAb was exposed to high temperature in order to induce oxidation, and then analyzed using the HALO® Penta-HILIC capillary column, demonstrating it is an ideal choice for peptide oxidation analysis of mAbs.

(A) Extracted ion chromatogram of (-) DIQMTQSPSSLSASVGDRVTITC(Carbamidomethyl)R(A)

(B) Extracted ion chromatogram oxidized (-) DIQMTQSPSSLSASVGDRVTITC(Carbamidomethyl)R(A) showing a mass shift of 8, as expected for an oxidized doubly charged peptide

PEPTIDE SIX-COLUMN SCREEN

TEST CONDITIONS

PEPTIDE TEST MIX

TEST CONDITIONS

Column: Part Number:	Avantor® ACE® C18-300, 5 μm, 4.6 x 250 mm ACE-221-2546				
Mobile Phase:	 A: 0.1% Trifluoroacetic acid in H₂O B: 0.1% Trifluoroacetic acid in Acetonitrile 				
Gradient:	Time (min)	%В			
	0	10			
	25	40			
	0 1/ 1				

Flow Rate:	2 mL/min
Temperature:	Ambient
Injection Volume:	5 μL
Detection:	UV, 220 nm

PEPTIDES

PEPTIDES - SELECTIVITY CHANGES WITH BONDED PHASE AND MOBILE PHASE

TEST CONDITIONS

Column:	Avantor® ACE® C18-300, 5 μm, 4.6 x 250 mm Part Number: <u>ACE-221-2546</u>			
	Avantor® ACE® C Part Number	8-300, 5 μm, 4 <u>ACE-222-2546</u>	.6 x 250 mm	
	Avantor® ACE® C4-300, 5 μm, 4.6 x 250 mm Part Number <u>ACE-223-2546</u>			
	Avantor® ACE® Phenyl-300, 5 μm, 4.6 x 250 mm Part Number <u>ACE-225-2546</u>			
	Avantor® ACE® CN-300, 5 μm, 4.6 x 250 mm Part Number <u>ACE-224-2546</u>			
Mobile Phase:	A: 0.1% TFA or 0.1% Formic acid in H ₂ O B: Acetonitrile			
Gradient:	Time (min)	%В		
	0	10		
	25	40		
Flow Rate: Temperature: Detection:	1 mL/min Ambient UV, 220 nm			

ANALYTES

- 1. Gly-Tyr (MW: 238.34)
- 2. Val-Tyr-Val (MW: 379.45)
- 3. Methionine enkephalin (MW: 573.67)
- 4. Angiotensin II (MW: 1046.18)
- 5. Leucine enkephalin (MW: 555.62)

0.1% TFA

Time, min

250

PEPTIDES - SELECTIVITY CHANGES WITH BONDED PHASE AND MOBILE PHASE (continued)

ANALYTES

- 1. Gly-Tyr (MW: 238.34)
- 2. Val-Tyr-Val (MW: 379.45)
- 3. Methionine enkephalin (MW: 573.67)
- 4. Angiotensin II (MW: 1046.18)
- 5. Leucine enkephalin (MW: 555.62)

45 ⁽⁾ <u>table of contents</u> <u>visit our website</u> →

PEPTIDES

PEPTIDES - VARYING PH WITH PHOSPHATE BUFFERS

TEST CONDITIONS

RAPID SEPARATION OF PEPTIDES

TEST CONDITIONS

Column: Part Number:	Avantor [®] ACE [®] Ex <u>EXL-171-0503U</u>	xcel C18, 100 Å	, 1.7 μm, 3.0 x 50 mm		
Mobile Phase:	A: 0.05% TFA in B: 0.05% TFA in	A: 0.05% TFA in H_2O B: 0.05% TFA in Acetonitrile			
Gradient:	Time (min)	%В			
	0.0	5	• •		
	3.0	40			
	4.0	90			
	5.5	90			
	10.5	5			
Flow Rate: Temperature: Injection Volume: Detection:	0.8 mL/min 60 °C 1 μL UV, 220 nm				

ANALYTES

TRYPTIC DIGEST OF IgG

TEST CONDITIONS

Column:	Avantor® ACE® UltraCore BIO C18, 300 Å, 3.5 μm, 3.0 x 100 mm Part Number: <u>BIO-350-1030</u> Avantor® ACE® UltraCore BIO C4, 300 Å, 3.5 μm, 3.0 x 100 mm			Flow Rate: Temperature: Injection Volume: Detection:	0.43 mL/min 60 °C 20 μL UV, 214 nm
	Avantor® ACE® Ultra Part Number: <u>BIC</u>	<u>2-351-1030</u> aCore BIO Phenyl2 <u>2-352-1030</u>	2, 300 Å, 3.5 μm, 3.0 x 100 mm	System Dwell Volume:	525 μL
Mobile Phase:	 A: 0.1% TFA in H₂C B: 0.1% TFA in Ace) tonitrile			
Gradient:	Time (min)	%B			
	0	2			
	60	40			
	61	95			
	64	95			
	65	2			
	75	2			
mAU 40 20 0	MMhhu	muchal	mulhm Wharman	C 18-300	Mart
40 20	. 1			C 4-300	h-1
o Lun Mun	MMM Mum	M. M. M.			
40 20	1			Phenyl2-	300
Mn.A.	1. Munuel	hummenlum		- Mile Man When Man	white
0	10	20	30	40 5	0 min

48 [•] <u>table of contents</u> <u>visit our website</u> →

TRYPTIC DIGEST OF IgG USING 500 Å PORE COLUMNS

TEST CONDITIONS

Column:	Avantor® ACE® Ultra Part Number: <u>BIO</u>	aCore C18, 500 <u>D-250-1030</u>	Flow Rate: Temperature: Injection Volume:	0.43 mL/min 60 °C	
	Avantor [®] ACE [®] Ultra	aCore BIO C4, 3	500 Å, 2.5 μm, 3.0 x 100 mm	Detection:	UV, 214 nm
	Avantor [®] ACE [®] Ultra	aCore BIO Phe	nyl2, 500 Å, 2.5 μm, 3.0 x 100 mm	System Dwell Volume:	525 μL
	Part Number: BIG	0-252-1030			
Mobile Phase:	A: 0.1% TFA in H_2C B: 0.1% TFA in Ace) tonitrile			
Gradient:	Time (min)	%B			
	0	2			
	60	40			
	61	95			
	64	95			
	65	2			
	75	2			
40 20 0	. M. M.	a_eehadu	l	C18-500	L
40 20 0	ula hansemalike	ll	hulling	C4-500	
40 20	_h.M.	martin	_L.M.M.	Phenyl2-5	00
0	10	20	30 4	0 50	min

TRYPTIC DIGEST OF LYSOZYME

TEST CONDITIONS

Column:		Avantor [®] ACE [®] UltraCore BIO C4, 300 Å, 3.5 μm, 3.0 x 100 mm Part Number: <u>BIO-351-1030</u> Avantor [®] ACE [®] UltraCore BIO C18, 300 Å, 3.5 μm, 3.0 x 100 mm Part Number: <u>BIO-350-1030</u> Avantor [®] ACE [®] UltraCore BIO Phenyl2, 300 Å, 3.5 μm, 3.0 x 100 mm Part Number: BIO-352, 1030				Flow Rate: Temperature: Injection Volume: Detection: System Dwell Volume	0.43 mL/min 60 °C 10 μL UV, 214 nm : 525 μL	
Mobile Phas	ie:	A: 0.1% TFA in B: 0.1% TFA in	H₂O Acetonitrile					
Gradient:		Time (min) 0.0 20.0 21.0 23.0 23.5 33.5	%B 5 45 95 95 5 5					
mAU 150 100 50 0	u	A			mm Mmlh		C4-300	
150 100 50 0		M			Mmmmhhm	luman	C18-300	
120 80 40 0		^			hl		Phenyl2-	· 300
U	2	4	Ø	ŏ	IU	IZ	14 16	min

50 ^{(→} table of contents visit our website →

GRADIENT SEPARATION OF PEPTIDES AND PROTEINS

TEST CONDITIONS

Column:	Avantor® ACE® C4	4-300, 3 μm, 2.	1 x 150 mm		
Part Number:	ACE-213-1502				
Mobile Phase:	A: 0.1% TrifluoroB: 0.1% Trifluoro	acetic acid in H acetic acid in A	l ₂ 0 .cetonitrile:H ₂ 0 (80:20 v/v)		
Gradient:	Time (min)	%B			

0.0	10
15.0	50
17.5	50
18.0	10

0.5 mL/min
60 °C
3μL
UV, 220 nm

ANALYTES

1.	Oxytocin	1,007 Da
2.	Bradykinin	1,060 Da
3.	Angiotensin II	1,046 Da
4.	Angiotensin I	1,296 Da
5.	Ribonuclease A	13.7 kDa
6.	Cytochrome C	12.3 kDa
7.	Bovine Insulin	5,733 Da
8.	Human Insulin	5,808 Da
9.	Porcine Insulin	5,777 Da
0.	Lysozyme	14.3 kDa

PEPTIDE AND PROTEIN MIX

TEST CONDITIONS

Column:

Part Number:

Mobile Phase:

HALO BioClass Protein ES-C18, 400 Å, 3.4 μm, 2.1 x 150 mm <u>93412-702</u>

Gradient:

<u>93412-702</u> A: H₂O + 0.1% DFA B: 80/20 Acetonitrile/H₂O + 0.1% DFA

Time (min)	%B
0.0	0
15.0	60
16.0	60
16.1	0
20.0	0
0.5 mL/min 165 bar	

Flow Rate: Initial Pressure: Temp erature: Detection: Injection Volume: Sample Solvent: Data Rate: Response Time: Flow Cell: LC System: 20.0 0.5 mL/min 165 bar 60 °C UV 220 nm, PDA 1.5 μL H₂O 40 Hz 0.025 sec 1 μL Shimadzu Nexera X2

STRUCTURE:

HALO 400 Å ES-C18, 3.4 μm

A mix of peptides and proteins was separated with excellent resolution and peak shape using the HALO 400 Å ES-C18. The steric protection of this phase makes it particularly ideal for the high temperature and low pH conditions often required for peptide and protein separations. Because of its smaller pore size compared to the 1000 Å ES-C18, the 400 Å ES-C18 easily separates mixtures of peptides and smaller proteins such as cytochrome C, alpha-lactalbumin, and enolase.

PEPTIDES AND PROTEINS

TEST CONDITIONS

Column:	Avantor® ACE® UltraCore BIO C4, 500 Å, 2.5 μm, 3.0 x 100 mm
Part Number:	<u>BI0-251-1050</u>
Mobile Phase:	A: 0.1% TFA in H ₂ O
	B: 0.1% TFA in Acetonitrile/H ₂ O 90:10 v/v
Flow Rate:	0.6 mL/min
Temperature:	60 °C
Injection Volume:	5 μL
Detection:	UV, 220 nm

53 ⁽⁾ table of contents visit our website →

PROTEINS

EFFECT OF PORE SIZE ON PROTEIN PEAK SHAPE AND WIDTH

TEST CONDITIONS

Colum Part N	n: umber:	HALO Bi <u>92122-7</u> <u>93412-7</u> <u>92712-7</u>	oClass ES-C18, <u>02</u> (160 Å) <u>02</u> (400 Å) <u>02</u> (1000 Å)	2.1 x 150 mm		Pore s HPLC mono ES-C1 Peak	size can play an important pa separations. A range of pro- clonal antibody are separate 18 160 Å, 400 Å, and 1000 Å widths decrease as the colu	art in your teins and a ed on HALO Å columns. mn packing's
Mobile	Phase:	A: H ₂ O (B: 80/20	0.1% TFA) Acetonitrile/ H	20 (0.085% TF	<i>\</i>)	pore s mono	size becomes larger, especia clonal antibody. The 160 Å p	Illy for the pore size
Gradie Flow R Tempe Detect Injectio	nt: ate: erature: ion: on Volume:	27–60% 0.4 mL/n 60 °C UV 280 r 4 μL	B in 15 minute: nin nm, PDA	5		is reco of 100 recom to 500 molec	ommended for molecules in D Da to 15 kDa. The 400 Å p nmended for molecules betw D kDa. The 1000 Å pore size cules over 50 kDa.	the range ore size is veen 2 kDa is used for
Sample Data R	e Solvent: ate:	H ₂ O (0.1 40 Hz	% TFA)					
Respor Flow C	nse Time: ell:	0.025 se 1 uL	С					
LC Sys	tem:	Shimadz	u Nexera X2					
160	A 2.7 micron particl PEPTIDE	•	1000 Å 2.7 micron p	particle PROTEIN	400 Å 3.4 micron particle	A 1. 2. 3. 4.	NALYTES (in order) Ribonuclease A (13.8 kDa) Lysozyme (14.4kDa) SILu™ Lite SigmaMAb Anti Enolase (46.7 kDa)) body (~150 kDa)
					0.04	8		
	1		0.048			0.165	5	0.122
→ -	2.7µm	n, 160 A						
nce, mAl	3.4µm	n, 400 Å	0.041		0.036	0.069	(0.048
osorba			0.039		0.035	c	0.045	0.041
¥ -	2.7µr	n, 1000 Å					~	
ō		2	4	6	8	10	12	14
				Lime	e, min		(Superpositioned numbers a	are peak widtris

(Superpositioned numbers are peak widths at half height in minutes)

EFFECT OF SILICA PORE SIZE ON PROTEIN SEPARATIONS

TEST CONDITIONS

55 ⁽⁾ <u>table of contents</u> visit our website →

EFFECT OF TEMPERATURE ON THE SEPARATION OF PROTEINS

TEST CONDITIONS

Column: Part Num	iber:	łALO BioClass Protein C4, 400 Å, 3.4 μm, 2.1 x 100 mm <u>/3412-614</u>	
Mobile Pl	hase:	2/28: A/B These separations demonstrate the effect of elevated temperatures on the efficiency of elevated temperatures on the elevated temperatures on temperatures on the elevated temperatures on tempe	
Gradient:	:	8% B–58% B in 10 minutes conditions on a HALO Protein C4, 3,4 um.	
Flow Rate	9:	.45 mL/min 400 Å pore column. One observes taller and	
Pressures	S:	ee chromatograms narrower peaks as the temperature increases.	
Temperat	tures:	ee chromatograms The HALO C4 phase has been shown to be very	
Detectior	ו: גע ג	IV 215 nm, PDA stable even at these elevated temperatures.	
Injection	Volume:		
Sample S	olvent:	lobile phase A	
Response	e Time:	ANALYTES	
	m.	vicient 1200 SI 1/ 3 kDa	
Gradient	delav volume	$\sim 250 \text{ µJ}$ 2 Bovine serum albumin $\sim 66.4 \text{ kDa}$	
		3. α-Chymotrypsinogen A 25.0 kDa	
_		4. Enolase 46.7 kDa	
		5. Ovalbumin 44.0 kDa	
_		1 2 4 ₅	
AU	151 ba 30 °C	$\int \int \frac{3}{1}$	
bance @ 215 nm, m	95 bar 60 °C		
Absorb	68 bar 90 °C		

MARTER CHROMATOGRAPH

2

4

0

56 ⇒ table of contents visit our website →

6 Time, min 8

10

PROTEINS

IMPROVED PROTEIN SEPARATIONS WITH HALO PROTEIN C4 COMPARED TO TOTALLY POROUS C4

Column: Part Number:	HALO BioClass Protein C4, 400 <u>93412-614</u>	Å, 3.4 μm, 2.1 x 100 mn	1			
Column 2:	Totally Porous C4, 2.1 x 100 mm	n, 5 μm	Sharper, taller peaks are observed using			
Mobile Phase:	Iobile Phase:A: H2O/0.1% TFAB: Acetonitrile/0.1% TFA			the HALO Protein C4 column compared to a conventional totally porous C4 column.		
Flow Rate: Gradient: Starting pressure: Temperature:	0.5 mL/min 25% B to 52% B in 10 minutes As indicated on chromatograms 60 °C	5	provides improved ready apomyoglobin, catala	coveries for holotransferrin, ise, and enolase.		
Injection Volume: Sample Solvent:	1 μL Mobile phase A LIV 215 nm PDA		ANALYTES			
Detection: Data Rate: Response Time: Flow Cell: LC System:	5 Hz 1 sec 2 μL micro cell Agilent 1200 SL rotein C4, 3.4 μm 03 bar 1		 Ribonuclease A Cytochrome c Lysozyme Holotransferrin Apomyoglobin Catalase Enolase 	13.7 kDa 12.4 kDa 14.3 kDa 77 kDa 17 kDa tetramer of ~ 60 kDa each 46.7 kDa		
-5 -5	2 3 4	5 6	7 8	9 10		
		Time, min	-	-		
OP 45 ************************************	Porous C4, 5 μm 5 bar					

PROTEINS

INSULIN ANALOGS IN CLINICAL AND POST-MORTEM ANALYSES

TEST CONDITIONS

Column: Part Number: Mobile Phase:	Avantor® ACE® C1 <u>ACE-221-0502</u> A: 0.1% Acetic a B: 0.1% Acetic a (25:75 v/v)	18-300, 5 µm, 2.1 x cid in H₂O cid in IPA/Acetonitr	50 mm Flow Rate: Injection Volume: Detection: ile	0.55 mL/min 40 μL ESI positive ion mo Ion spray voltage: Temperature:	ode 5500 V 600 °C	
Gradient:	Time (min)	%B		MS Instrument:	AB Sciex QTRAP 5500	
	0.0	0.0 22	Sample:	100 μg/mL insulin steroid-free serum	analogs in	
	0.5 1.0	22				
		34				
	3.0	36				
	4.0	98				
	6.2	98				
	6.3	22				
			ANALY	TES	6	
4.4e5 -			1. Glargi	ne		
4.0e5	3,4,5		2. Bovin 3. Aspar 4. Lispro	e Insulin t		
3.6e5			5. Insulir 6. Deten	n R nir		
3.2e5						
ა 2.8e5						

5.0

MEDIUM MOLECULAR WEIGHT PROTEINS

TEST CONDITIONS

Column: Part Number: Mobile Phase: Avantor® ACE® C8-300, 3 μm, 2.1 x 150 mm <u>ACE-212-1502</u>

A: 0.1% Trifluoroacetic acid in H₂OB: 0.1% Trifluoroacetic acid in Acetonitrile

Gradient:

mAU

40

Time (min)	%B
0	25
25	50
28	80
30	80
31	25
45	25

Flow Rate:
Temperature:
njection Volume:
Detection:

0.21 mL/min 60 °C 5 μL UV, 220 nm

ANALYTES

1.	Ribonuclease A	13.7 kDa
2.	Cytochrome C (Equine)	12.4 kDa
3.	Cytochrome C (Bovine)	12.3 kDa
4.	Bovine Serum Albumin	66.5 kDa
5.	β-Lactoglobulin	18.4 kDa
6.	Ovalbumin	42.7 kDa

2

PROTEIN SEPARATION ON 1000 Å COLUMN

TEST CONDITIONS

Column: Part Number: Mobile Phase:

HALO BioClass Protein ES-C18, 1000 Å, 2.7 μm, 2.1 x 150 mm 92712-702 A: H₂O, 0.1% TFA

B: 80/20 Acetonitrile/ H₂O, 0.085% TFA

Gradient:	Time (min)	%B
	0.0	27
	15.0	60
Flow Rate: Pressure: Temperature: Injection Volume: Sample Solvent: Detection: Data Rate: Response Time: Flow Cell: LC System:	0.4 mL/min 268 bar 60 °C 2 μL H ₂ O/ 0.1 %TFA UV 280 nm, PDA 12.5Hz 0.05 sec 1 μL Shimadzu Nexera	1 X2

This mix of proteins with a wide range of molecular weights is separated with high efficiency on a HALO 1000 Å ES-C18 column. Because it provides improved access to the particle surface, the 1000 Å pore size enables large biomolecule analysis with excellent peak shape and high resolution.

ANALYTES

- 1. Ribonuclease A 13.7 kDa
- 2. Lysozyme 14.3 kDa
- 3. SigmaMAb ~150 kDa
- 4. α-Lactalbumin
- 14.2 kDa
- 5. Enolase
- 46 kDa monomer

PROTEIN TEST MIX

TEST CONDITIONS

Column: Part Number:	Avantor [®] ACE [®] C ACE-221-2546	Avantor [®] ACE [®] C18-300, 5 μm, 4.6 x 250 mm <u>ACE-221-2546</u>						
Mobile Phase:	A: 0.1% TFA in H B: 0.1% TFA in A	A: 0.1% TFA in H ₂ O B: 0.1% TFA in Acetonitrile						
Gradient:	Time (min)	%B						
	0	5						
	30	70						
Flow Rate:	1.0 mL/min Ambient							

Detection:

UV, 280 nm

										Time, mir	1					
	0	0	2	4	6	8	10	12	14	16	18 2	0 22	24	26	28	30
	0-	1	_	~~~			-				101	~				
	5-	-									11					
	10-															
	15-										3	4				
		-								1						
Resp	20 -	1														
onse, l	25 -	-														
MilliVol	30 -															
ts	35 -															
	40 -										2					
		-									·	, ,				
	45-	1									3. Holo- 4. Apom	transferrin yoglobin	MW: ~ MW: ~	77 kDa 17kDa		
	50 -	1									 Ribon Cytoc 	uclease A hrome C	MW: ~ MW: ~	14 kDa 12 kDa		

61 $\stackrel{()}{\rightarrow} \underline{\text{table of contents}}_{\underline{\text{visit our website}}} \rightarrow$

WHEY PROTEINS FROM WHOLE MILK

TEST CONDITIONS

Column: Part Number: Mobile Phase: Avantor® ACE® C4-300, 3 μm, 2.1 x 150 mm <u>ACE-213-1502</u>

A: 0.5% Formic acid in H₂O B: 0.5% Formic acid in Acetonitrile Flow Rate: Temperature: Injection Volume: Detection: 0.4 mL/min 40 °C 10 μL ESI-MS (+ve)

Gradient:

B:	B: 0.5% Formic acid in Acetonit							
	Time (min)	%В						
	0	35						
	16	43						
	17	80						
	20	80						
	21	35						
	31	35						

ANALYTES

- 1. α -Lactalbumin
- 2. β -Lactoglobulin B
- 3. β-Lactoglobulin A

Avantor® and ACE® are registered trademarks of Avantor Inc. HALO® and Fused-Core® are registered trademarks of Advanced Materials Technology, Inc. MAC-MOD is an approved distributor of Avantor®, ACE®, and HALO® products in the US.

PHONE: (610) 358-9696 | TOLL-FREE: 1 (800) 441-7508

103 Commons Court | Chadds Ford, PA 19317 https://www.mac-mod.com | technical@mac-mod.com