
HALO: | Fused-Core® Particle Technology

Application Note: 090-DNPH

Separation of Carbonyl Compounds as Dinitrophenylhydrazone Derivatives on HALO 2.7µm C18

TEST CONDITIONS:

Flow Rate: 1.5 mL/min.

Column: 4.6 x 150 mm, HALO 2.7 μ m C18 Part Number: 92814-702 Mobile Phase: A/B: 55/45 (to start) A= Water B= (Acetonitrile/THF): (80/20 v/v) <u>Time %B</u> 0.0 45.0 7.5 58.0 9.0 80.0 12.0 80.0 STRUCTURES:

General -2,4-DNPH structure

Pressure: 355 Bar Temperature: 30°C Detection: UV 360 nm, VWD Injection Volume: 0.3 μ L Sample Solvent: Acetonitrile Response Time: 0.02 sec. Flow Cell: 2.5 μ L semi-micro LC System: Shimadzu Prominence UFLC XR ECV: ~14 μ L This separation is based on modified EPA methods 8315 and 554 and achieves baseline resolution of the sample components by the use of a small particle size packing and a mobile phase containing both acetonitrile and tetrahydrofuran (THF). The addition of THF is necessary to achieve this resolution. As a result, peak elution order is also changed. PEAK IDENTITIES:

Peak	R1 -H	R2 -H
2	-H	—CH ₃
3	$-CH_3$	$-CH_3$
4	-H	CH ₂ H
5	-H	CH ₃
6	-H	H H H CH ₃
7	$-CH_3$	∕_CH ₃
8	-H	CH ₂ II CH ₃
9	-H	∕_CH ₃
10	-H	\neg
11	-H	\searrow CH ₃
12	-H	CH ₃
13	-H	(CH ₂)4CH ₃

FOR MORE INFORMATION OR TO PLACE AN ORDER, CONTACT:

www.advanced-materials-tech.com

advancedmaterialstechnology

[®] HALO and Fused-Core are registered trademarks of Advanced Materials Technology, Inc.