Comparison of Phenyl and C18 bonded-phases to obtain separation selectivity of peptide mixtures

Benjamin P. Libert

Chuping Luo, Conner McHale, Mark Haynes, Stephanie Schuster Mark Schure, and Barry Boyes

Advanced Materials Technology. Wilmington, DE

Agenda

Philadelphia

NASA Earth Observatory. J. Allen Landsat 8 - OLI

- Peptide separation selectivity options in RP versus standard alkyl bonded phase are often sought.
- Alternate selectivity could be obtained by use of phenyl bonded phases
- Aim to explore selectivity differences of φ-Hexyl, φ-Butyl, φ-Ethyl vs C18
- Selectivity Differences of Identified Peptides using Test System under various conditions
- Global vs specific selectivity differences
- Examples of utility for selected peptides

Bonded Phase	Surface Coverage (μm/m ²)	Endcapped
C18	1.7	No
φ-Hexyl	3.5	Yes
φ-Butyl	3.4	No
φ-Ethyl	2.1	No

¹Surface Coverage based on %Carbon

Original Halo Superficially Porous Particles Fused-Core[®]

Shell with 90 Å or 160 Å pores

- Low back pressure due to the particle design (solid core with a porous shell)
- No need for specialized HPLC equipment
- Not necessary to filter samples and mobile phase since frits are not as small as needed for sub-2- μm
- High resolution is maintained at high flow rates (flat C-term in van Deemter plot)

Low pH Column Stability: φ-Hexyl 19,520 column volumes

WORK FLOW

Trastuzumab: (monoclonal antibody) **Reduced/Alkylated**

Trypsin Digest Shimadzu Nexera-UV coupled to **Orbitrap Velos Pro ETD**

Peptide Identification by MS² fragmentation spectra

15 10 5 **Extracted Ions Used to Measure Retention**

and Peptide Pair Selectivity Differences

HerDigest, ITMS, 948

1200

800

600

GRFTISADTSKNTAYLQMNSLRAEDTAVYYcSR

848.42 924.69

1170 77

1313.87

377.69

1421.98

advancedmaterialstechnology

MS Selectivity (α)

 $k_1 = (t_1 - t_0)/t_0 \qquad t_0 = \text{void time}$ $\alpha = k_2/k_1$

Measuring Differences in Selectivity for Peptide Pairs

Average (
$$\Delta \alpha$$
):Average Absolute Value ($\Delta \alpha$):11 $(n-1) \Sigma_{n-1} \Delta \alpha$ $(n-1) \Sigma_{n-1} | \Delta \alpha |$

n = number of peptides; n-1 = number of peptide pairs

Selectivity Differences for 42 Peptide Pairs

Average Selectivity Differences for Peptide Pairs

Varied Bonded Phase (Same Mobile Phase) φ-Hexyl:C18 φ-Butyl:C18 φ-Ethyl:C18

1/(n-1) $\Sigma_{n-1} \Delta \alpha$ 0.017 0.025 0.028 1/(n-1) $\Sigma_{n-1} \mid \Delta \alpha \mid$ 0.044 0.072 0.064

Pair-wise Comparison of Bonded Phase Orthogonality

Varied Bonded Phases (Same Mobile Phase)			
	Dim	R.H.A.	1-r ²
C18/φ-Hexyl	1.10	0.048	0.0045
<mark>C18/φ-Butyl</mark>	1.23	0.073	0.0123
C18/φ-Ethyl	1.19	0.057	0.0079
φ-Hexyl/φ-Butyl	1.21	0.040	0.0035
φ-Hexyl/φ-Ethyl	1.15	0.030	0.0024
φ-Butyl/φ-Ethyl	1.16	0.034	0.0026
"perfect Dim"	2		

Dim = Dimensionality

- R.H.A. = Relative Hull Area
- 1-r² = Pearson Correlation Coefficient

M.R. Schure, J. M. Davis, Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations, J. Chromatogr. A (2017)

Could You Observe Larger Selectivity Differences by Changing the Mobile Phase?

Average Selectivity Differences for Peptide Pairs

Pair-wise Comparison of Mobile Phase Orthogonality

	Varied Mobile Phase (Same Bonded Phase)				
		Dim	R.H.A.	1-r ²	
C18	DFA:AFFA	1.206	0.070	0.012	
φ-Hexyl	DFA:AFFA	1.187	0.068	0.012	

Dim = Dimensionality

R.H.A. = Relative Hull Area

1-r² = Pearson Correlation Coefficient

M.R. Schure, J. M. Davis, Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations, J. Chromatogr. A (2017)

🤕 advancedmaterialstechnology

Conclusions

- For identified peptides, the order of increasing selectivity difference relative to C18 was: φ-Hexyl < φ-Ethyl < φ-Butyl
- When the bonded phase was varied (same mobile phase), φ-Butyl demonstrated the greatest average selectivity difference relative to C18
- When the mobile phase was varied (same bonded phase), φ-Hexyl demonstrated the greater average selectivity difference than C18
- Models for measuring selectivity differences and for measuring orthogonality were in agreement; varied mobile phase comparison ongoing..
- A wider range of useful operating conditions (pH, temperature, etc.) could take advantage of improvements in bonded phases for HPLC and LCMS applications.

Thanks To:

Joe DeStefano	Tim Langlois	
Bob Moran	Will Miles	
Brian Wagner	Ron Orlando	
Matt Jackson	Jason Lawhorn	

Supported by NIH Grant GM116224 (Boyes).

Conditions and Procedure: Column Comparison

<u>Trypsin Digest Sample</u>: Reduced and alkylated trastuzumab (monoclonal antibody) was digested at 1:30 protein to enzyme for 4hrs in 50 mM Tris-HCl (pH 7.8)/1.5M Guanidine-HCl, followed by formic acid acidification and direct injection.

Instrument:	Nexera/Orbitrap Velos Pro ETD		
{Particle Size} μm:	2.7	Bonded Phases:	C18, Phenyl Hexyl, Phenyl Butyl, Phenyl Ethyl
{Pore Size} Å:	160	{Column Size} mm:	2.1x100mm
{Sample Conc.} mg/mL:	0.1mg/mL	{Digest Injection V.} µL:	10 μL
{Temperature} C ^o :	60	{Flow Rate} mL/min:	0.3
Mobile Phase 1 (A):	10mM Difluoroacetic Acid (DFA)	Mobile Phase 1 (B):	10mM DFA in ACN
MP1 Gradient:	2-50% B		
Mobile Phase 2 (A):	10mM Ammonium Formate (AF)/10mM Formic Acid (FA)	Mobile Phase 2 (B):	10mM Ammonium Formate (AF)/ 10mM Formic Acid (FA) in 90% ACN
MP2 Gradient:	2.2-56% B		
{Gradient Time} min:	60		
% ACN/min:	0.8	{Sampling Rate} Hz:	10
MS Scan:	300-2000 m/z	{Response} s:	0.1
ESI Source:	3.5 kV	Wavelength:	220 nm

Global Comparison: Identified Peptides

