

INCREASED SENSITIVITY AND SOLVENT SAVINGS WITH NOVEL 1.5 MM ID STAINLESS STEEL UHPLC COLUMNS

Stephanie A. Schuster, Ph.D. Advanced Materials Technology, Inc.

MAC-MOD April 20, 2022

Outline

- Desire to move to smaller ID columns
- Benefits of smaller IDs with novel 1.5 mm ID UHPLC Columns
- Q & A

The Move to Smaller ID Columns

- HPLC columns were originally 4.6 mm ID operated at 1 mL/min+
- 3.0 mm ID columns introduced as a means to save solvent
 - 47% solvent savings going from a 4.6 x 100 mm @ 1.5 mL/min to a 3.0 x 100 mm @ 0.8 mL/min
- Short columns with 2.1 mm ID columns introduced for use with UHPLC and for interfacing to mass spectrometers
- Impact of Smaller ID Columns
 - Effects of viscous friction are diminished
 - Signal intensity is increased when same sample concentration used
 - Less solvent consumed = reduced consumable & waste disposal costs

Fundamental Effects in Transitioning to Smaller Internal Column Diameters

Viscous Friction

Formation of Thermal Gradients Due to Viscous Friction $Power = F\Delta P$

Axial Gradients: Less reproducible elution times

Gritti, F., Guiochon, G. J. Chrom. A **2009**, *1216*, 1353-1362. Grinias, J. P., et. al. J. Chrom. A **2014**, *1371*, 261-264.

Formation of Axial Thermal Gradients Due to Viscous Friction

Gritti, F., Guiochon, G. J. Chrom. A **2009**, *1216*, 1353-1362. Grinias, J. P., et. al. J. Chrom. A **2014**, *1371*, 261-264. Axial Thermal Gradients are maximized in (quasi)-adiabatic environments:

Insulated columns or still-air oven conditions (no convective movement from oven fan)

Higher Efficiency, but higher Δt_r across flow rate range

Formation of Radial Thermal Gradients Due to Viscous Friction

Gritti, F., Guiochon, G. J. Chrom. A **2009**, *1216*, 1353-1362. Grinias, J. P., et. al. J. Chrom. A **2014**, *1371*, 261-264. Radial Thermal Gradients are maximized in (quasi)-isothermal environments:

Air/water-jacketed columns or forced-air oven conditions (convective movement from oven fan)

Lower Δt_r across flow rate range, but lower efficiency

Considerations for Reducing Viscous Friction: Smaller Internal Column Diameter

$$Power = F\Delta P$$

Column inner diameter	Flow rate	Pressure	Power	
4.6 mm	2.0 ml min^{-1}	7000 bar	24.0 W	
2.0 mm	380 µl min ⁻¹	7000 bar	4.5 W	
1.0 mm	95 μ l min ⁻¹	7000 bar	1.1 W	
500 µm	$24 \ \mu l \ min^{-1}$	7000 bar	280 mW	
250 µm	5.9 μl min ⁻¹	7000 bar	71 mW	
100 µm	940 nl min ⁻¹	7000 bar	11 mW	
50 μm	240 nl min ⁻¹	7000 bar	2.9 mW	

^aPower equals heat divided by time, which equals flow rate times pressure drop. Assume $1.0-\mu m$ particles packed in a 50-cm-long column.

^b24 W equals 344 calories min⁻¹ or 172 calories ml⁻¹.

Enough

phase

power to

before it

exits the

column!

boil mobile

Fundamental Effects in Transitioning to Smaller Internal Column Diameters

Peak Signal

Internal Column Diameter and Concentration-Sensitive Detection

- Most LC detectors are concentration-sensitive
 - LOD is improved when LC delivers highly concentrated sample
 - Minimize dilution in mobile phase
 - Flow rate optimum scales with ratio of square of radius of column

Example: 4.6 mm to 1.0 mm i.d. column 1 mL/min to around 50 µL/min (1000µL/min)/(50µL/min) = 20-fold enhancement

*This calculation based on <u>identical</u> sample load (same sample concentration and injection volume)

Comparison of Absorbance Signal with Varying Column Diameter

Fundamental Effects in Transitioning to Smaller Internal Column Diameters

Extra-Column Effects

Sources of Extra-Column Band Broadening

Sources of Extra-Column Band Broadening

Pros & Cons in Shifting from 2.1 mm i.d. to 1.0 mm i.d.

In move from 2.1 mm i.d. to 1.0 mm i.d., signal increases and viscous friction decreases, but there is a significant loss in efficiency primarily due to extracolumn effects. 1.5 mm i.d. columns can provide a compromise between these effects.

Summary

• Smaller ID columns are less subject to the effects of viscous heating

- Smaller ID columns offer benefits of increased signal and reduced solvent consumption
 - To realize the benefit of increased signal, the impact of extracolumn effects of the UHPLC and/or MS system being used must be minimized

A NEW DIMENSION IN SEPARATIONS

WE'RE TAKING SEPARATIONS TO A NEW DIMENSION

MEET THE NEW HALO[®] 1.5

What benefit does it offer?

MORE PERFORMANCE FROM UHPLC AND LCMS SYSTEMS

More sensitivity from conventional UHPLC systems

✓ Higher ionization efficiencies from LCMS systems

Reduced solvent consumption compared to 2.1 mm id columns (and greater)

Easy to implement microflow solution with existing systems

More sensitivity from conventional UHPLC systems

Comparison of Gradient Separation of OTC Cough and Cold Medicines

More sensitivity from conventional UHPLC systems

Enhanced Impurity Identification

Intact Trastuzumab using HALO 1000 Å Diphenyl under Gradient Conditions

22

3

A State

1.13

Higher ionization efficiencies from LCMS systems – Vitamin D Metabolites

27

Higher ionization efficiencies from LCMS systems – Vitamin D Metabolites

Higher ionization efficiencies from LCMS systems – Vitamin D Metabolites

Reduced solvent consumption compared to 2.1 mm id columns

Peptide Map of Trastuzumab under Gradient Conditions

30

Reduced solvent consumption compared to 4.6 mm id columns

Peak identities (in order) are CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, ∆9-THC, ∆8-THC, CBC, and THCA.

Reduced solvent consumption when modernizing methods

USP Method for Estradiol

1.5 mm ID Stability – Example 1

- HALO 1000 Å Diphenyl in 1.5 mm ID column hardware was tested at 600 bar for 1000 injections.
- No loss in efficiency or retention was observed over the course of the experiment.

TEST CONDITIONS:

Column: HALO 1000 Å Diphenyl, 2.7 µm, 1.5 x 150 mm Mobile Phase A: Water B: Acetonitrile Isocratic: 25 %B Flow Rate: 0.4 mL/min Back Pressure: 600 bar Temperature: 30 °C Detection: 254 nm, PDA Injection Volume: 0.2 µL Sample Solvent: 60/40 ACN/ Water Data Rate: 200 Hz Response Time: 0.005 sec. Flow Cell: 1 µL LC System: Shimadzu Nexera X2

1.5 mm ID Stability – Example 2

- A HALO 90 Å C18 1.5 mm ID column was run for 1000 injections
- Retention factor of naphthalene was stable across all of the injections

TEST CONDITIONS:

Column: HALO 90 Å C18, 2.7 µm, 1.5 x 150 mm Mobile Phase A: Water B: Acetonitrile Isocratic: 60 %B Flow Rate: 0.6 mL/min Back Pressure: ~600 bar Temperature: 30 °C Detection: 254 nm, PDA

Injection Volume: 0.2 µL Sample Solvent: 60/40 ACN/ Water Data Rate: 200 Hz Response Time: 0.005 sec. Flow Cell: 1 µL LC System: Shimadzu Nexera X2

HALO[®] 1.5 mm ID Column Hardware Reproducibility

Excellent reproducibility from 3 different lots of column hardware

Easy to implement microflow solution

Column looks and feels like a 2.1 mm...

Successful implementation requires system optimization via: • Hardware

Accessories

Success using HALO[®] 1.5 mm ID

- System
- Connectors
- Method Transfer to 1.5 mm

Variance Charts – Gradient

Where Has My Efficiency Gone? Impacts of Extracolumn Peak Broadening on Performance 4 part series in LCGC North America from Dwight R. Stoll, Thomas Lauer, & Ken Broeckhoven <u>http://www.multidlc.org/dispersion_calculator</u>

38

AMT MarvelXACT[™] Connectors

Difference between MarvelXACT[™] and ferrule fitting

- PEEKsil[™] and PEEK-Lined Stainless Steel options
- Volume included with dimension for easy selection

Material	
PEEKsil™	
Dimension	
75µm x 600mm, 2650 nl	

MarvelXACT and MarvelX are registered trademarks of IDEX.

How to transfer a method to a 1.5 mm ID column?

• Scale flow rate

$$F_2 = F_1 \times \frac{(\pi R_2)^2}{(\pi R_1)^2} = F_1 \times \frac{(R_2)^2}{(R_1)^2} = F_1 \times \frac{(D_2)^2}{(D_1)^2}$$

 F_2 = scaled flow rate F_1 = original flow rate D_2 = column ID being transferred to D_1 = original column ID

2	COLUMN IDS						
	4.6	3.0	2.1	1.5	1.0		
.OW RATES (mL/min)	0.96	0.41	0.20	0.10	0.045		
	1.44	0.61	0.30	0.15	0.068		
	1.92	0.82	0.40	0.20	0.091		
	2.40	1.02	0.50	0.26	0.113		
	2.88	1.22	0.60	0.31	0.136		

- If gradient method, add injection time delay to account for dwell volume
- Scale injection volume to maintain signal or keep same injection volume for increased signal

Benefits of Fused-Core[®] in a 1.5 mm

HALO[®] 1.5 mm ID Columns

Chemistries & pore sizes available for small molecules, peptides, and proteins

- HALO 90 Å C18
- HALO 160 Å ES-C18
- HALO 1000 Å C4
- HALO 1000 Å Diphenyl

Summary

- ✓ More sensitivity from conventional UHPLC systems
- ✓ Higher ionization efficiencies from LCMS systems
- ✓ Reduced solvent consumption compared to 2.1 mm id columns
- Easy to implement microflow solution with existing systems
- Made by a trusted manufacturer of Fused-Core[®] columns in a 9001 ISO-certified facility
- Available in chemistries for small molecule, peptide, and protein separations

HALO[®] and Fused-Core[®] are registered trademarks of Advanced Materials Technology

technical@mac-mod.com

Photo by Camylla Battani on Unsplash