

Method Development for the Separation of Major Cannabinoids and Terpenes using a six Column Selectivity Screening Approach

Geoffrey Faden¹

¹MAC-MOD Analytical

1. Introduction

- Cannabis samples are complex and contain several target compound classes that are of interest from analytical and regulatory perspectives.
- Cannabinoids and terpenes are major components and are therefore of primary importance.
- Regulatory requirements for testing are varied and may require determination of several key cannabinoids, for example¹:
- Δ⁹-Tetrahydrocannabinol (Δ⁹-THC)
- Cannabidiol (CBD)
- Δ⁹-Tetrahydrocannabinolic acid A (THCA-A)
- Cannabidiolic acid (CBDA)
- Cannabigerol (CBG)
- Cannabinol (CBN)

10. Δ9-Tetrahydrocannabinolic acid A (THCA-A)

- Terpenes are another target class of interest due to potential synergistic effects with cannabinoids and potential use for fingerprinting cultivars.
- This poster summarises work performed to develop LC-MS compatible methods for the analysis of an extended list of 10 cannabinoids of interest and for fingerprinting terpene content.

¹State of California, AB 266 Medical marijuana, Article 9, Section 19344 (2015-2016)

2. Experimental

- Samples were screened on six reversed-phase columns, including five ACE novel chemistries, to identify the most suitable stationary phase chemistry.
- The ACE novel chemistries have been engineered to each offer unique selectivity and provide a comprehensive method development tool.

ACE C18-Amide (Embedded amide group to increase retention of polar components and alternative selectivity)

ACE C18-AR (Hydrophobic and phenyl interactions)

ACE SuperC18 (Highly retentive with extended pH stability

ACE CN-ES (Hydrophobic and polar interactions)

3. Cannabinoids - Six-Column Screen

- LC/MS compatible mobile phase.
- The six ACE phases provide alternative selectivity – ideal for method development.
- The ACE SuperC18 was found to be the most promising phase.

4. Cannabinoids - Optimised Separation

- The gradient conditions were optimised to reduce analyte retention and maintain resolution of the analytes.
- An initial isocratic hold was required to maintain separation of peaks 1&2.
- Full separation achieved in <8 minutes.</p>

(-)-11-Nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH), 2. Cannabidivarin (CBDV), 3. Cannabidiolic acid (CBDA), 4. Cannabigerol (CBG),
 Cannabidiol (CBD), 6. Tetrahydrocannabivarin (THCV), 7. Cannabinol (CBN), 8. (-)-trans-Δ⁹-Tetrahydrocannabinol (THC), 9. Cannabichromene (CBC),
 Δ⁹-Tetrahydrocannabinolic acid A (THCA-A)

5. Cannabinoids - Rapid Analysis

The method was translated to an ACE UltraCore 2.5 SuperC18 solid core column using the ACE LC Translator Tool (Download free at www.ace-hplc.com).

(-)-11-Nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH),
 Cannabidivarin (CBDV),
 Cannabidiolic acid (CBDA),
 Cannabigerol (CBG)

5. Cannabidiol (CBD), 6. Tetrahydrocannabivarin (THCV), 7. Cannabinol (CBN), 8. (-)-trans-Δ9-Tetrahydrocannabinol (THC), 9. Cannabichromene (CBC)

6. Fingerprinting Terpenes – Six-Column Screening

A set of 21 terpenes was screened using automated ChromSword Auto 5 method development software to identify optimal gradient profile.

The six phases give different selectivity for this complex sample – ideal for method development.

The ACE C18-PFP was selected based on retention, peaks separated and overall selectivity.

Detection:

UV, 210 nm

7. Terpenes – Optimised Method

The ACE C18-PFP provided reasonable separation for this complex mix.

1. (-)-11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), 2. Cannabidivarin (CBDV), 3. Cannabidiolic acid (CBDA),

8. (-)-trans-Δ9-Tetrahydrocannabinol (THC), 9. Cannabichromene (CBC), 10. Δ9-Tetrahydrocannabinolic acid A (THCA-A)

4. Cannabigerol (CBG), 5. Cannabidiol (CBD), 6. Tetrahydrocannabivarin (THCV), 7. Cannabinol (CBN),

- Method suitable for fingerprinting terpene profile of cannabis samples.
- Method moved to LC-MS compatible conditions to allow identification and quantitation of individual components as required.
- Future work:
 - Further optimise the separation
 - Develop a unified LC-MS method for cannabinoids and terpenes.

8. Conclusions

- Full separation of 10 cannabinoids was successfully achieved.
- Method development using six-column screening rapidly identified the ACE SuperC18 as the optimum stationary phase for the separation.
- Optimisation of the gradient resulted in full separation of the cannabinoids in less than 8 minutes using LC-MS compatible conditions.
- The final separation was translated to a 50 x 3.0 mm format ACE UltraCore 2.5 SuperC18 column to further reduce the analysis time to < 3 minutes.</p>
- An LC-MS compatible method for terpenes was identified on the ACE Excel C18-PFP using a column screening approach.
- Work is ongoing to develop a unified method for the determination of both cannabinoids and terpenes in a single run.