
CLINICAL / TOXICOLOGY

HALO

Nicotine Metabolite Comparison of 1.5 mm to 2.1 mm ID Column using HILIC Separation Mode

TEST CONDITIONS:

314

 Column: HALO 90 Å Penta HILIC, 2.7 μm 1.5 x 150 mm

 Part Number: 9281X-705

 Column: HALO 90 Å Penta HILIC, 2.7 μm 2.1 x 150 mm

 Part Number: 92812-705

 Isocratic: 10/90 20mM Ammonium Formate @ pH=3/ ACN + 0.1% Formic Acid

 Flow Rate: 0.4 mL/min

 Pressure: 188 Bar - 1.5 mm 73 Bar - 2.1 mm

 Temperature: 40 °C

 Detection: UV 254 nm, PDA

 Injection Volume: 1.0 μL

 Sample Solvent: 10/90 Water/ACN

 Data Rate: 100 Hz

 Response Time: 0.025 sec.

Response Time: 0.025 sec. **Flow Cell:** 1 µL

LC System: Shimadzu Nexera X2

PEAK IDENTITIES

- 1. Cotinine
- 2. Trans-3-hydroxycotinine
- 3. Nicotine
- 4. Anabasine
- 5. Nornicotine

Nicotine is a widely known alkaloid found in cigarettes and is highly addictive. In order to break the addiction to nicotine, people must be weaned off the alkaloid slowly to reduce the side effects of withdrawal. This requires monitoring of nicotine and its metabolites as well. Due to the basic nature of nicotine, it is difficult to separate under reversed phase conditions. By running the samples under HILIC conditions, there is sufficient retention for each chemical to be separated completely. In the above chromatogram a comparison of the 1.5 and 2.1mm ID's is shown. The HALO[®] 1.5 mm ID Penta-HILIC column produces a similar separation but with increased peak heights and increased area counts for the same injection volume of sample. When working with clinical samples that can be low in abundance, a 1.5 mm ID column can produce a lower LOD for problematic samples.

AMT_AN_Rev_0 advancedmaterialstechnology Made in the USA

INNOVATION YOU CAN TRUST, PERFORMANCE YOU CAN RELY ON HALO® and Fused-Core® are registered trademarks of Advanced Materials Technology