Novel Hydrophilic Bonded-Phase Fused-Core[®] Particles for Highly Efficient HILIC Separations

Barry E. Boyes^{1,2}, Timothy Langlois, Joseph J. DeStefano and Joseph J. Kirkland

Advanced Materials Technologies, Inc., Wilmington, DE USA;
Complex Carbohydrate Research Center, UGA, Athens, GA USA

Fused Core Bonded Phase HILIC

Opportunities

- HILIC has many potential advantages
- HILIC separation speed and robustness
- Bonded phases for broadened applications

Current State

- Superficially porous particles can have strong performance advantages
- Silica HILIC has limitations
- HILIC bonded phases on superficially porous particles have a challenge of retention due to phase ratio available

Development and characterization of Fused-Core BPs

- HILIC retention is complex
- Highly hydroxylic bonded phase is appealing
- Polymeric bonded phases likely to limit mass transfer kinetics prefer use of a monolayer silane
- Maximizing Performance: Retention, Selectivity, Efficiency, Stability, Reproducibility

Superficially Porous (Fused-Core) Particles

x (µm)	у (µm)	d _p (µm)	Pore Size (Å)	Surface Area (m²/g)
1.7	0.5	2.7	90	130
1.7	0.5	2.7	160	80

SEM Particle Cross-section

Silane Reagents for Hydrophilic Functional Groups

Effect of Surface Functional Groups on a HILIC Separation 95% Acetonitrile/5 mM NH₄OAc, pH 4.0: 2.1 mm ID x 100 mm, 25 °C, 0.5 mL/min

Effect of Mobile Phase Organic Composition on Retention 5 mM NH₄Acetate, pH 4.0: 2.1 mm ID x 100 mm, 25 °C, 0.5 mL/min

HILIC Separation of A/B/Z on Silica and Pentanol Silane Surface 90% Acetonitrile/10 mM NH₄Form, pH 3.0: 2.1 mm ID x 100 mm, 25 °C, 0.5 mL/min

Effect of Buffer Concentration on HILIC Separations 90% Acetonitrile/NH₄Form, pH 3.0: 2.1 mm ID x 100 mm, 25 °C, 0.5 mL/min

Contribution of Ionic Strength on HILIC Separations 90% Acetonitrile/NH₄Form, pH 3.0: 2.1 mm ID x 100 mm, 25 °C, 0.5 mL/min

Percent Contribution of Ionic Strength on Retention

	Proc	3MT
2 mM	63	50
10 mM	58	26

High Speed HILIC Separation of Catecholamines and Amino Acids 4.6 mm ID x 50 mm; 2 mL/min., 85% AcN/10 mM NH₄Form 3.0, 25 °C; 3 μL inj

Note: at 85% AcN all k' lower on Silica than on Pentanol.

Effect of Linear Velocity on Pentanol Column Efficiency

4.6 mm ID x 50 mm; 90% AcN/10 mM NH₄Form 3.0, 25 °C; 1 μL, 50 ng Adenosine

Data fitted to van Deemter curve

Pentanol HILIC Column Stability in Acidic Mobile Phase

4.6 mm ID x 50 mm 90% AcN/0.05% TFA, 60 °C, 1.5 mL/min.

Pentanol HILIC Column Stability in Acidic Mobile Phase at 60 C

4.6 mm ID x 50 mm 90% AcN/0.05% TFA, 60 °C, 1 mL/min.

Pentanol HILIC Column Stability in Basic Mobile Phase 4.6 mm ID x 50 mm

Test: 90% AcN/0.1% NH₄Form pH 3.0, 1.8 ml/min, 78bar, 23 °C, 254 nm, 2.0 ul inj Challenge: 50% AcN/50 mM NH₄PO₄, pH 9.0, 30 °C, 2 mL/min.

Comparative Retention of HILIC Columns

2.1 mm ID x 150 mm Test: 90% AcN/10 mM NH₄Form pH 3.0, 0.5 mL/min, 23 °C Toluene/Amitryptaline/Salicyclic Acid/Thiamine

Conclusions

Hydroxylic Bonded Phases

- HILIC retention increased with the degree of hydroxylic substitution
- Larger monomeric hydroxylated silanes exhibited increased retention of all analytes, particularly acids and zwitterions
- The Pentan-OL ligand shows relatively high acid and zwitterion retention, with moderated base retention

Fused-Core Pentanol Properties

- The densely bonded hydroxylated ligand exhibits HILIC retention insensitive to ionic strength over the tested range/conditions, not exhibiting typical silanol anionic character
- Column stability is high, at modest back pressures
- Column efficiency is as good, and sometimes better than, superficially porous materials
- Retention and performance is comparable to, and in some cases better than, amide-type bonded phases

Acknowledgements

Technical and scientific assistance: Dr. Stephanie Schuster Dr. Bill Johnson Jason Lawhorn

Financial Support: NIH NIGMS GM099355

