PRACTICAL APPLICATION OF FUSED-CORE® COLUMNS WITH CONVENTIONAL HPLC INSTRUMENTATION: Understanding the Importance of Extracolumn Volume

Objectives of the Study

- [,] Determine the effects of extracolumn volume and dispersion on performance of HALO[®] Fused-Core[®] columns when using conventional instrumentation.
- Determine how much extracolumn volume and dispersion is allowed to achieve acceptable performance from various HALO column geometries
- Provide instrument configuration and parameter recommendations to chromatographers so that Fused-Core columns can deliver acceptable and optimum performance levels for both high throughput and high resolution separations

HALO Fused-Core Particle

HALO Fused-Core Columns Exhibit UHPLC-like **Performance at Conventional HPLC Pressure**

Extracolumn dispersion: Experimental parameters

- signal filtering
- Impact of extra-column dispersion varies inversely with column volume, peak volume, and retention

Thomas J. Waeghe, Robert T. Moody, Carl L. Zimmerman, MAC-MOD Analytical, Inc., Chadds Ford, PA

Estimating maximum acceptable extracolumn volume, w

Maximum Acceptable ECV

- Lower for higher efficiency columns (N) (smaller d_ lower H/h)
- Lower for smaller volume columns (V_m)
- Higher for longer retention (k)

Example: Calculating maximum ECV to achieve 90% of resolution (81% of N) when k = 3.

<u>4.6 x 250 mm, 5 µm column</u> $N_{obs}/N_{theor} = 0.81, N_{theor} = 20,000; V_m 2.5 mL$ $W_{m} = 125 \,\mu L$

<u>3 x 50 mm, 2.7 µm HALO</u> $_{\rm m} \sim 177 \,\mu L$, h ~1.45, N_{theor} = 12770 $W_{ec} = 12 \,\mu L$

Most conventional HPLCs have $30 < w_{cc} < 100 \,\mu L$

Affect of sources of extracolumn dispersion on isocratic and gradient separations

Extracolumn dispersion before the column has much more effect on isocratic separations than gradient separations

- Injection volume
- Sample solvent composition
- Flow path in autosampler and valve
- Tubing from the autosampler to mobile phase preheater (if present)
- Precolumn heat exchanger
- Tubing from precolumn heat exchanger to column
- Volume due to any in-line filters, unions, guard columns, etc.

Extracolumn dispersion after the column effects both isocratic and gradient separations

- Tubing from the column to flow cell
- Flow cell volume and design
- Signal filtering due to detector response time

Experimental: Instrumentation and Configurations

Agilent 1100 Quaternary System

- Popular HPLC system in many laboratories
- Quaternary pump with low pressure mixing,
- Standard autosampler with variable volume injector
- Standard tubing ID (0.007") and lengths in sample flow path
- Variable wavelength UV-VIS detector Flow cells
 - -1 μL, 5 μL and 14 μL
- * Response times
- -0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 sec

Evaluation of 3 Instrument Configurations with Different **ECVs**

- ECVs chosen for acceptable performance with respective column sizes
- Standard configuration
- Low ECV configuration
- Ultra-Low ECV configuration

Experimental: Column dimensions, test mixture and criterion selected

Columns

- 4.6 mm ID: 50, 100, and 150 mm
- 3.0 mm ID: 50 and 100 mm
- 2.1 mm ID: 50 mm Column geometries selected based on (1) column volume, (2) greater

Test Mixture

- Probe analytes chosen from among mono-substituted and di-substituted benzenes
- uracil, benzyl alcohol, benzonitrile, nitrobenzene, anisole,
- 1-chloro-4-nitrobenzene, toluene
- k values from ~0.35 to ~3.5 vs. uracil void marker

Criterion

- Aim for $N_{obs} \ge 81\%$ of N_{theor} ($R_{obs} \ge 90\%$ of maximum theoretical R)
- Reduce ECV and decrease response times to improve N for smaller columns

likely use by more chromatographers and (3) historical sales data

HALO Fused-Core columns deliver significantly better performance when ECV is reduced

Standard Configured Agilent 1100

- ECV ~36 µL
- Standard flow cell; 14 μL 0.5 sec. response time Standard length and ID tubing (0.007" ID x 750 mm total)

HALO C18 4.6 x 100 mm 2.7 µm, 2 mL/min

Ultra-Low ECV Configured Agilent 1100

- ECV ~10 µL
- Semi-micro flow cell; 5 μL 0.5 sec. response time
- Reduced length and ID tubing (0.005" ID x 460 mm total)

Theoretical plates vs. ECV for conventional and HALO Fused-Core columns

How to improve resolving power with high efficiency, smaller volume columns

Reduce Extracolumn Dispersion

- Use smaller volume flow cell ($\leq 5 \,\mu$ L)
- Use fastest practical data rate and shortest detector response time - Set detector response time to fastest setting that provides acceptable S/N. (< 0.2 seconds recommended for HALO columns. • Set data rate to collect at least 20 data points across the narrowest peak of interest. (> 5 Hz recommended for HALO columns.) • Reduce tubing ID and length between injector and flow cell

- Connection from column to flow cell is more important than from autosampler to column - use a smaller volume pre-column heat exchanger $(1.6 \,\mu\text{L})$
- (if necessary)
- Use smallest practical injection volume (repeatability) • Choose sample solvent composition to be weaker than mobile phase,
- solubility permitting

Configuring your instrument for ultrafast and high resolution HPLC

	Standard Configuration	Low Volume Configuration	Ultralow Volume Configuration
Total ECV	~36 µL	~17 µL	~12 µL
Flow Cell	Standard, 14 or 13 µL	Semi-micro, 5 µL	Micro, 1 or 2 µL
Tubing	0.007" ID, Standard Lengths	0.005" ID, Minimal lengths	0.005″ ID, Minimal lengths
Heat Exchanger	3 µL, Standard	3 μL, Standard	1.6 µL, Micro
Acceptable Fused- Core Columns	4.6 mm ID columns > 50 mm lengths	All 4.6 mm ID columns and 3.0 mm ID columns ≥75 mm lengths	All 4.6, 3.0, and 2.1 mm ID columns

Ultrafast and high resolution separations with low **ECV configured HPLC system**

Ultra-fast gradient separation of 9 component sample in ~1 minute with HALO Fused-Core column on a low ECV configured HPLC system

6. valerophenone, 7. hexanonphenone, 8. heptanophenone, 9. octanophenone

Conclusions

Extracolumn dispersion in conventional HPLC systems can limit the benefits of columns that generate fast eluting, small volume peaks.

Achieving "UPLC-like" performance is possible with conventional HPLC equipment by reducing extracolumn band broadening and using an appropriate HALO Fused-Core column.