C avantor™

Avantor® ACE® reversed-phase systematic method development protocol

COLUMN SCREENING WITH ACE METHOD DEVELOPMENT KITS (MDKS)

Four Steps for Streamlined Method Development

- Avantor[®] ACE[®] MDKs include 3 columns designed with complementary selectivity
- Column screening is a simple yet powerful approach, allowing a suitable column to be quickly identified
- The approach can be made more comprehensive by screening 2 different mobile phase organic modifiers
- The flow chart summarises how a method development screen can be carried out in 4 simple steps

- Changing the column stationary phase can have a dramatic impact on selectivity (Figure 1)
- Screening different columns with the same mobile phase conditions can help achieve your desired separation quicker with better resolution

Columns	50 x 2.1 mm
Mobile phase	A = 0.1% formic acid in H_2O B = 0.1% formic acid in MeOH: H_2O (9:1 v/v)
Gradient	3 to 100% B in 5 mins
Detection	UV, 254 nm
Flow rate	0.60 mL/min
Temperature	40 °C
Sample	1) Metronidazole, 2) Benzyl alcohol, 3) Hydrochlorothiazide, 4) Vanillin, 5) Methyl paraben, 6) 1,2-Dinitrobenzene

FIGURE 1: The effect of changing column stationary phase.

- ACE MDKs group columns with different mechanisms of interaction to maximise selectivity and increase the likelihood of separating challenging mixtures
- The two most popular ACE reversed-phase (RP) MDKs (see table below) include unique phases engineered to exploit different retention mechanisms and maximise selectivity
- All six phases can be used with standard RP conditions and are as robust as a C18 phase
- Other ACE MDKs available include HILIC, Bioanalytical 300 Å and UltraCore

		Separation mechanism and relative strength ¹				
	Bonded Phases	Hydrophobic binding	π -π Interaction	Dipole- Dipole	Hydrogen bonding	Shape selectivity
ACE Advanced Method Development Kit	ACE C18	****	-	-	*	**
	ACE C18-AR	****	*** (donor)	*	**	***
	ACE C18-PFP	****	*** (acceptor)	****	***	****
ACE	ACE SuperC18	****	-	-	-	**
Extended Method Development Kit	ACE C18-Amide	****	-	**	****	**/***
	ACE CN-ES	***	*	***	**	*

SELECTING COLUMN DIMENSIONS AND PARTICLE SIZE

Defined by the LC system and user preference. For 400 bar HPLC systems, 5 μ m 150 x 4.6 mm is a good choice. For 600 bar optimised HPLC systems, 2 and 3 μ m particles in shorter columns (e.g. 100 mm) can be used. 1.7 μ m particles in short column lengths (e.g. 50 mm) are suitable for UHPLC systems.

HOW TO DETERMINE AN APPROPRIATE SCREENING GRADIENT TIME

The gradient time can be selected using equation 1. $V_{\rm M}$ can be estimated using equation 2.

Always remember to include a post-gradient isocratic re-equilibration of at least 10 x V_{M} before the next injection.

Avantor[®] ACE[®]

¹ Approximate value – determined by semi-quantitative mechanism weightings and/or by reference to other ACE phases using > 100 characterising analytes

WORKED EXAMPLE

- Acetaminophen and Related Substances
- Mobile phase pH selection based on analyte pKa and logD
- The most common starting point for method development (C18) did not separate all analytes using either MeOH or MeCN
- Further method development would be required
- Using a 6 column/2 mobile phase screen, 6 solutions were immediately identified
- No further method development required!

Columns	2 µm 100 x 3.0 mm		
Mobile phase	A = 20 mM NH₄OAc pH 6.0		
	B = 20 mM NH ₄ OAc pH 6.0 in Organic: H_2O (9:1 v/v)		
Gradient	5 to 95%B in 10 min		
Flow rate	1.2 ml/min		
Temperature	40 °C		
Injection volume	2 µl		
Sample	1) Acetaminophen (paracetamol)		
	2) 4-Aminophenol		
	3) Hydroquinone		
	4) 2-Aminophenol		
	5) 2-Acetamidophenol		
	6) Phenol		
	7) 4-Nitrophenol		
	8) 2-Nitrophenol		
	9) 4-Chloroacetanilide		
	10) 4-Chlorophenol		

