

Selectivity: A Potent Ally in RPLC Method Development

<u>Thomas J. Waeghe</u>, Carl L. Zimmerman, Robert T. Moody MAC-MOD Analytical, Inc. Chadds Ford, PA 19317

> Eastern Analytical Symposium November 15, 2012

- Review factors most important for selectivity changes
- Description of complementary alkylphenyl and alkylpentafluorophenyl phases
- Method development strategy
 - which parameters to consider
 - specific approach for flavonoid/phenolic sample example
 - column phase and organic modifier screening
 - optimization using DryLab[®] 4 (t_G × T)
 - scale separation to HPLC geometry
- Summary

Isocratic Separations

- Column Stationary Phase
- Organic modifier
- Mobile phase pH
 (for ionised analytes only)
- % Organic modifier
- Column temperature
- Buffer choice
- Buffer concentration
- Additive concentration

LEAST Influence

Gradient Separations

- All parameters for isocratic
- Gradient steepness
- k* (that is t_G , F, $\Delta \Phi$, V_m, MW)

$$k^* = \frac{85 \times t_G \times F}{\Delta \Phi \times V_m \times S}$$

- Delay volume
- Column dimensions

Power of Changing Multiple Parameters to Change Selectivity and Resolution

$$R_s = \left(\frac{1}{4}\right)\sqrt{N}\left(\alpha - 1\right)\left(\frac{k}{1+k}\right)$$

For $\Delta R_s = 1.5$, N = 10,000 and k \geq 1

(α – 1) = 0.12 and α = 1.12

log α = 0.05 and Snyder proposed $|\delta \log \alpha|_{avg} \ge 0.10$

For a change in both column phase and organic modifier, the expected change is magnified

$$|\delta \log \alpha|_{avg} = [(0.20)^2 + (0.19)^2]^{0.5} = 0.28$$

Relative Impact of Different Changes in RPLC Parameters on Selectivity¹

		Maximum
Parameter	Change in Parameter	$ \delta \log \alpha _{avg}$
рН	5 pH units	0.70
Organic Modifier	ACN ↔ MeOH	0.20
Gradient Time (t _G)	10-fold	0.20
Orthogonal Column	∆F _s ~65	0.19
% Organic	10% (v/v)	0.08
Temperature	20°C	0.07
Buffer Concentration	2-fold	0.02

Note:

■pH and buffer concentration effective for ionizable analytes only

Temperature most effective for ionizable analytes

Use of different column phases, organic modifiers, pHs, and temperatures can be powerful in changing α and R_s

¹ Adapted from Snyder et al., "Orthogonal" separations for reversed-phase liquid chromatography, Journal of Chromatography A, 1101 (2006) 122–135

Considerations for RPLC Method Development

		The PH Scale	
Contraction of the second seco		Acidic Alkaline	
Column	Organic Modifier	Mobile Phase	Additive
Stationary Phase	Choice	рН	Choice
Orthogonal phases	Acetonitrile (ACN)	• pH 2	Low pH
Complementary	Methanol (MeOH)	• nH 2 8	• TFA
interactions		• pri 2.0	• formic acid
interactions	ACN/MeOH 1:1 blend	• pH 3.8	• acetic acid
 hydrophobic 	Ethanol	• pH 4.8	 ammonium formate phosphate/H₃PO₄
• π-π	2-Propanol (IPA)	• pH 6.5–7.0	• HClO4
• dipole-dipole		• pH 7.8	Mid pH
hydrogen bonding		• pH 9 —10 .5	ammonium formate ammonium acetate
• steric resistance			• citrate
(shape)			• phosphate

- <u>High pH</u>
 - ammonium bicarbonate
 - ammonium hydroxide

The Power of π ...Scientific-Led Stationary Phase Design

ACN

Column 1	Column 2	Selectivity 'S'
C18	C18-AR	8
C18-AR	C18-PFP	8
C18	C18-PFP	7

MeOH

Column 1	Column 2	Selectivity 'S'
C18	C18-AR	12
C18	C18-PFP	11
C18-AR	C18-PFP	10

MeOH	ACN	Selectivity Value
C18-PFP	C18	19
C18-AR	C18	18
C18-AR	C18-PFP	18
C18-PFP	C18-AR	18
C18-PFP	C18-PFP	18
C18	C18-AR	17
C18	C18-PFP	17
C18	C18	15
C18-AR	C18-AR	15

Selectivity = 100 x $\sqrt{(1 - R^2)}$

Selectivity = $100 \times \sqrt{(1 - R^2)}$ = $100 \times \sqrt{(1 - 0.9887)}$ = 10.6

7

Objective: Develop a gradient RPLC separation for a complex analyte mixture

Available online at www.sciencedirect.com

JOURNAL OF CHROMATOGRAPHY A

Journal of Chromatography A, 1149 (2007) 73-87

www.elsevier.com/locate/chroma

Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants

F. Cacciola^{a,b}, P. Jandera^{a,*}, Z. Hajdú^a, P Česla^a, L. Mondello^b

^a Department of Analytical Chemistry, University of Pardubice, Nám Čs. Legií 565, 53210 Pardubice, Czech Republic ^b Dipartimento Farmaco-Chimico, University of Messina, Viale Annunziata 101, 98168 Messina, Italy Available online 5 February 2007

- J. Chrom. A, 2007
- Considered 31 analytes: phenolic, acidic, flavonoids
- Compared PEG, C18, and phenyl phases both in series (1-D) and in 2-D arrangements
- Previous work (2006) compared C18 and PFP phases in series and in 2-D
- Selected analyte category for method development example

• Column Phase Screening

- **C18**
- **C18-A**R
- **C18-PFP**
- Mobile phase
 - Organic modifier
 - ACN
 - MeOH
 - Aqueous component pH
 - pH 2.8 (0.1% HCOOH)

• Temperature

– **30°C**

Sample:

- •19 phenolics, acids and flavonoids used in 2-D method publication
- Preliminary sample: flavonoids on hand
- •Columns: 2.1 × 50 mm, 2 μm ACE *Excel*, 1000 bar max. (N ~ 10,000)
- •Screen C18, C18-AR, C18-PFP phases using ACN/water (0.1% HCOOH) at 30°C
- •Various gradient times: 5, 10, and 15 min from 5 to 95% organic

Test available flavonoids on ACE Excel Phases

- **Preliminary Sample**
- naringin
- •myricetin
- •quercetin
- kaempferol
- apigenin
- naringenin
- •hesper<u>etin</u>
- •biochanin
- •flavone

ACE C18 Column Screening: 30°C, 3 gradient times

9 Flavonoids

Longer gradient times do not always produce better resolution!

Column:	ACE Excel 2 C18, 2.1 x 50 mm
Inst.:	Shimadzu Nexera
Flow rate:	0.5 mL/min
Temp.:	30°C
Detection:	254 nm, 50 Hz
Mobile Phase A:	H2O (0.1% HCOOH)
Mobile Phase B:	ACN (0.1% HCOOH)
Gradient:	5–95%, times as shown

ACE C18-AR Column Screening: 30°C, 2 gradient times

9 Flavonoids

Column:	ACE Excel 2 C18-AR, 2.1 x 50 mm
Inst.:	Shimadzu Nexera
Flow rate:	0.5 mL/min
Temp.:	30°C
Detection:	254 nm, 50 Hz
Mobile Phase A:	Н2О (0.1% НСООН)
Mobile Phase B:	ACN (0.1% HCOOH)
Gradient:	5–95%, times as shown

ACE C18-PFP Column Screening: 30°C, 3 gradient times

9 Flavonoids

Same instrument and conditions as previous

Expanded View of 15-min gradient run

Results of Column Screening, Add more analytes

- Improvement in R_s with longer t_G's seen only with ACE C18-PFP
- Add additional analytes to mixture
 - mandelic acid
 - p-hydroxybenzoic acid
 - p-hydroxyphenylacetic acid
 - 6,7-dihydroxycoumarin
 - syringic acid
 - p-coumaric acid
 - ferulic acid
 - morin
 - resveratrol
 - hesperidin
- Use C18-PFP phase for DryLab[®] 4 optimization (t_G × T)
- Also compare C18 and C18-AR phases using ACN and MeOH and two temperatures (30 and 50°C)
- All subsequent results generated using binary Agilent 1200SL (V_D ~120 μL, 600 bar max.)

p-Hydroxybenzoic acid

(4-hydroxyphenyl)acetic acid

6,7-Dihydroxycoumarin

Syringic Acid

Morin

p-Coumaric Acid

Ferulic Acid

НО ОН

Resveratrol

Hesperidin

Minor selectivity differences using ACN and MeOH with 0.1% HCOOH for 15-min gradients: early eluters

Significant differences using ACN and MeOH with 0.1% HCOOH for 15-min gradients: Later Eluters

Gradient runs using 2 gradient times and 2 temperatures for DryLab[®] 4 input: C18-PFP Column

5–95% ACN/water with 0.1% HCOOH in each

DryLab[®] 4: 2-D Resolution Map and Conditions for Optimum Linear Gradient

DryLab[®] 4 courtesy of the Molnar Institute

Predicted for optimum linear gradient at 31.5°C 1-58.5% ACN/water (0.1% HCOOH) in <u>9.3 min</u> Predicted for optimum linear gradient at 31.5°C 1-58.5% ACN/water (0.1% HCOOH) in <u>28.5 min</u>

Transfer Optimum Linear Gradient Separation to ACE *Excel* C18-PFP 3 μm Column for HPLC

Actual chromatograms embedded using ChromMerge software

Screening and Optimization Doesn't Really Take That Long...

Example Scenario 1

Column/Modifier/Temperature

- 2.1 x 50 mm, 2 μm columns
- 3 Column Phases
- 2 Temperatures
- Single pH
- 2 Organic Modifiers
- 3 Gradient Times (5, 10, 15 min.)
- Duplicate injections all conditions

Required Time

- 1.5 hrs. for Temp 1
- 0.5 hr. temp. equilibrium
- 1.5 hrs. for Temp 2
- 3.5 hrs. elapsed time per phase
- ~10.5 hrs. total elapsed time

Example Scenario 2

Column/pH/Temperature

- 2.1 x 50 mm, 2 μm columns
- 3 Column Phases
- 1 Temperatures
- 3 pHs
- 2 Organic Modifiers
- 2 Gradient Times (5, 15 min.)
- Duplicate injections all conditions

Required Time

- 1 hr. for pH 1
- 0.5 hr. pH equilibrium
- 1 hr. for pH 2
- 0.5 hr. pH equilibrium
- 1 hr. for pH 3
- 4 hrs. elapsed time per phase
- ~12 hrs. total elapsed time

- A systematic method development approach that incorporates stationary phase and organic modifier screening can be efficient and effective.
- ACE Excel 2 μ m UHPLC columns with novel, unique, stationary phases and 1000-bar pressure max.
 - alkylaryl and alkylpentafluorophenyl groups are useful for polar analytes, structural isomers and analogs.
 - Larger particle size and larger frits allow faster flow rates (+30%) at the same pressure as most sub-2- μ m columns

• Acknowledgements

- Bob Albrecht, ChromMerge Software
- Dr. Imre Molnar and Norbert Klapczynski, Molnar-Institute

Additional Data (not shown in presentation)

ACE C18: Gradients ACN/water vs. MeOH/water, 30°C only

ACE C18: Best predicted results with ACN and MeOH gradients at 30°C using 2.1 x 50 mm ACE *Excel* 2

Local Optimum 2 5-95% in 11.7 min, 51°C

ACE C18-AR with MeOH/water (0.1% HCOOH) Predicted vs. Actual Chromatograms at Local Optima

28