
Size exclusion chromatography (SEC) with superficially porous (core-shell) particles

Mark R. Schure

Kroungold Analytical, Inc. Blue Bell, Pennsylvania

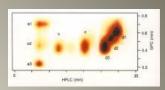
Robert E. Moran, Stephanie A. Schuster, Brian M. Wagner, Conner W. McHale

Advanced Materials Technology, Inc. Wilmington, Delaware

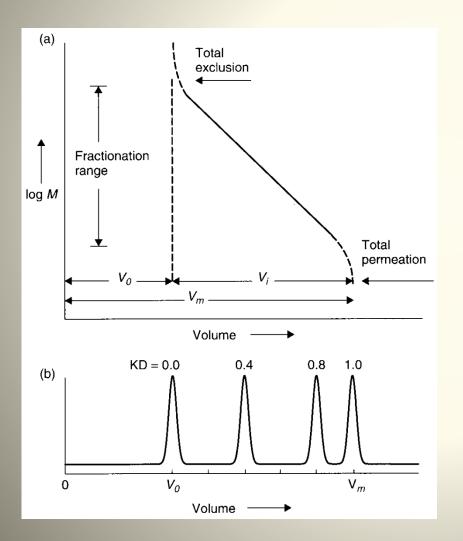
Introduction

 Size exclusion chromatography (SEC) and superficially porous particles (SPPs)

Experimental results of polystyrene separations


- Chromatograms, retention volume, plates, temporal plate production (speed), specific resolution
- Peak capacity, dilution volume

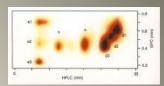
Optimization of shell thickness for plates and peak capacity


Applications

• Gold nanoparticle separations

Closing remarks

Hypothetical SEC calibration curve (a) and chromatogram (b).

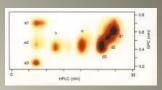


Molecular weight of unknown compounds can be estimated accurately only if their structures are similar to the standards used to generate the calibration curve.

The molecular weight range can be extended by coupling columns with particle pore sizes that differ.

$$V_R = V_0 + K \cdot V_i$$

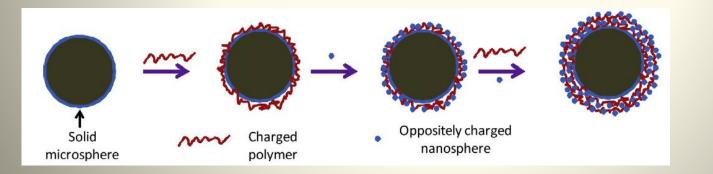
If V_i is larger then the retention volume, V_R is larger at constant K. This is the case for fully porous particles (FPPs). V_R is less for superficially porous particles (SPPs).


SEC: the good and bad

Problems with SEC

- Limited peak capacity
 - typically \approx 10 peaks; maybe more maybe less
 - for biomolecules there is always retention effects which reduce efficiency
 - typically run in water so phase must be hydrophilic
- Limited elution volume
 - peaks elute between V_0 and V_M so elution range is limited
- Generally a low resolution technique
- High shear force can (allegedly) tear up sensitive biomolecules, more later.

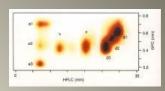
Good things about SEC

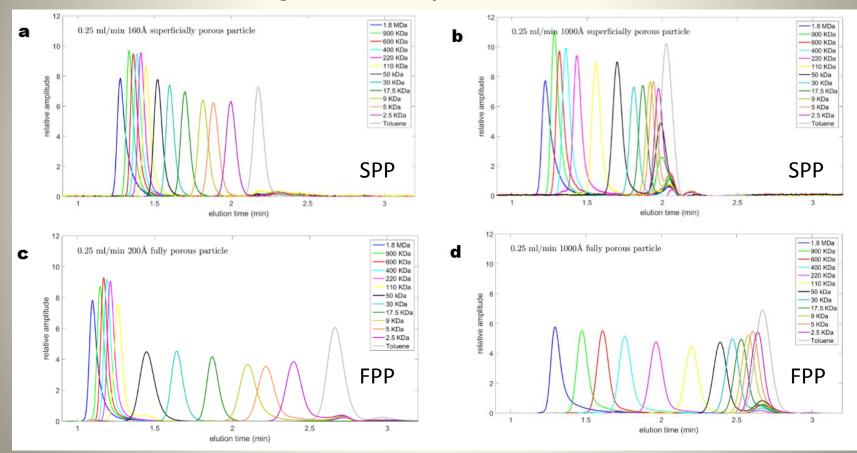

- Easy to use if adsorption is not a problem
- Compatible with multiangle light scattering (MALS) detectors
- Sometimes it's the only game in town
- Works well with 2D chromatography

Superficially porous particles (SPPs)

- Originally introduced by Horvath and Lipsky (J. Chrom. Sci. 7(2) (1969) 109-116.)
- Developed extensively by Jack Kirkland and staff at AMT
- The idea is simple: put a thin porous shell on a nonporous core
 - The shell thickness determines mass transport characteristics in the particle
 - Performance of a 2.7 μm particle rivals $\leq 2~\mu m$ particles with lower pressure drop

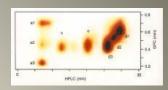
Core shell particle synthesis – the "layer by layer" approach:

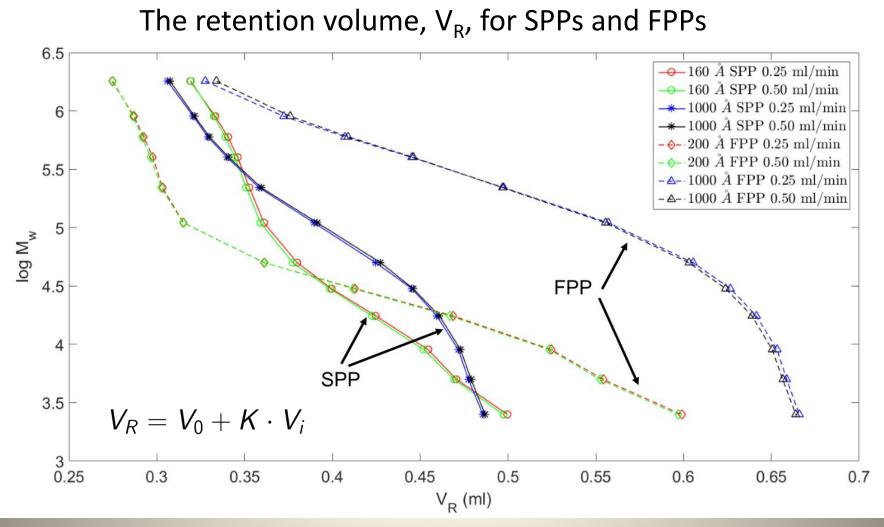



picture from R. Hayes, A. Ahmed, T. Edge, H. Zhang J. Chromatogr. A 1357 (2014) 36-52

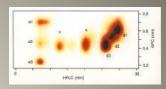
Chromatograms

Kroungold Analytical

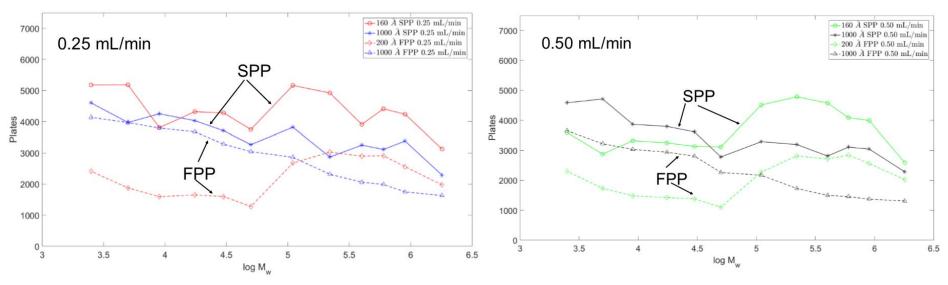

a,c: Chromatograms for small pore: 160 and 200 Å SPPs and FPPs b,d: Chromatograms for wide pore: 1000 Å SPPs and FPPs



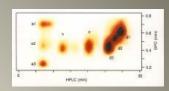
 Things to notice: SPPs – thinner zones and less retention time (volume) range


Retention volume

Kroungold Analytical



Smaller retention volume range because V_i is smaller This suggests faster elution with SPPs

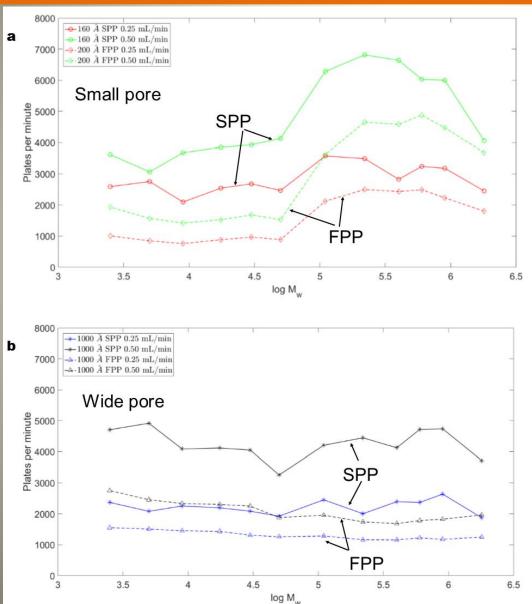

Plates

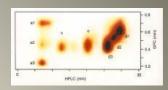
Plates comparison

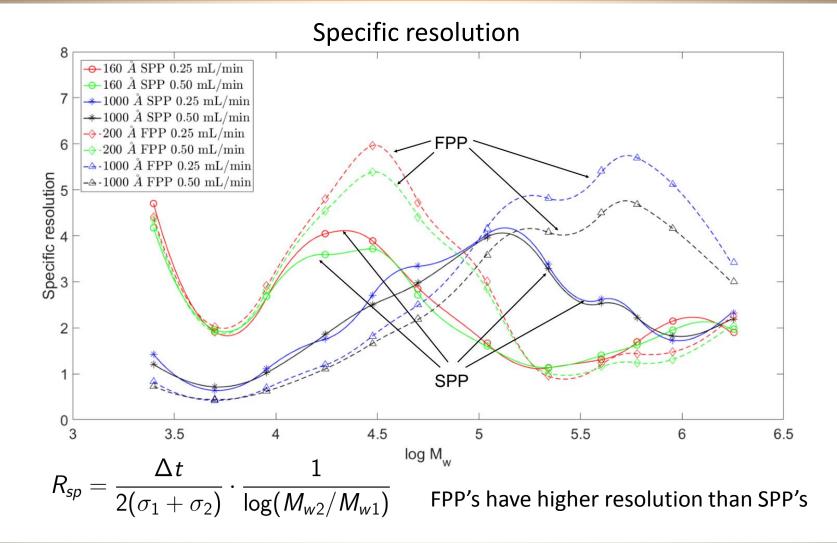
SPPs promote higher number of plates

 $N=(t/\sigma)^2$ - this is a balance between thermodynamics and kinetics Kinetics wins out with SPPs

Plates per unit time




Plate production per unit time is faster for SPPs than FPPs


Plate production per unit time is often referred to as speed¹

¹P. W. Carr, D. R. Stoll, X. Wang, Anal. Chem. 83 (2011) 1890-1900.

Resolution

Kroungold Analytical

Peak capacity

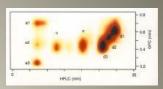
Kroungold Analytical

Peak capacity in SEC: SPPs versus FPPs

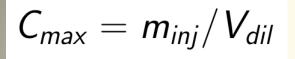
Peak capacity is the number of peaks that can be put next to each other with constant spacing between peaks

$$n_c = rac{t_f - t_1}{4\sigma R_s} \qquad n_c = 1 + rac{1}{2}$$

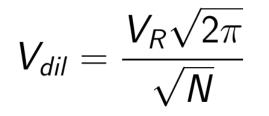
$$_{c}=1+rac{V_{p}/V_{t}}{\varDelta}\sqrt{N}$$


from Lars Hagel, J. Chromatogr. A 591 (1992) 47-54.

15										
Amplitude	Peak capacity of 30	Morphology	Pore size (A)	flow rate (mL/min)	V_p	$V_{_{t}}$	V_p / V_t	N	$\sqrt{N} = t / \sigma$	n_c
		SPP	160	0.25	0.164	0.544	0.301	4907	70.0	6.3
		SPP	160	0.5	0.164	0.542	0.303	7056	84.0	7.4
ild		SPP	1000	0.25	0.176	0.497	0.354	3410	58.4	6.2
UV 5		SPP	1000	0.5	0.176	0.497	0.354	5399	73.5	7.5
		FPP	200	0.25	0.379	0.666	0.569	2658	51.6	8.3
		FPP	200	0.5	0.376	0.663	0.567	3731	61.1	9.7
	5 10 15 20 25	FPP	1000	0.25	0.303	0.675	0.448	2717	52.1	6.8
, i	Time (minutes)	FPP	1000	0.5	0.299	0.675	0.443	3926	62.7	7.9


- Peak capacity in SEC is never large (≤ 10)
- The SPP and FPP peak capacity are \approx the same with a slight advantage to FPPs

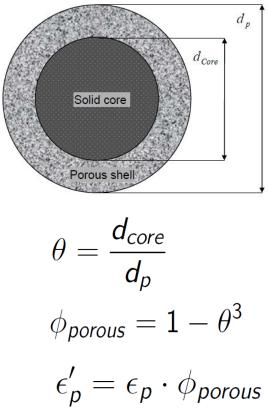
Detectability


Kroungold Analytical

Zone Dilution

smaller dilution volume \rightarrow larger concentration max C_{max} is proportional to chromatographic peak height

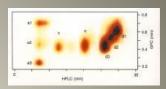
smaller retention volume & larger plate count \rightarrow minimize V_{dil} advantage: SPP

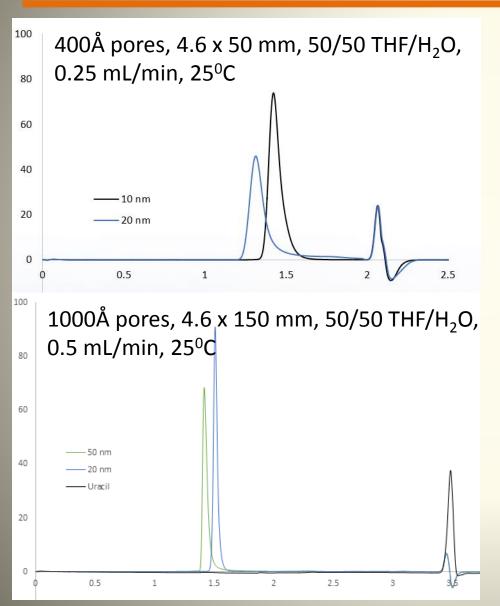

These equations are pertinent to 1D and to 2D when SEC is in the second dimension

 V_{dil} is very important in biomarker research high V_{dil} can be bad in 2D chromatography – you can lose the signal

Optimization of shell thickness for SEC SPP's

- 1) Use general rate model for different shell thickness θ , calculate moments.
- 2) Use Hagel's expression $n_c = 1 + \frac{V_p/V_t}{4}\sqrt{N}$

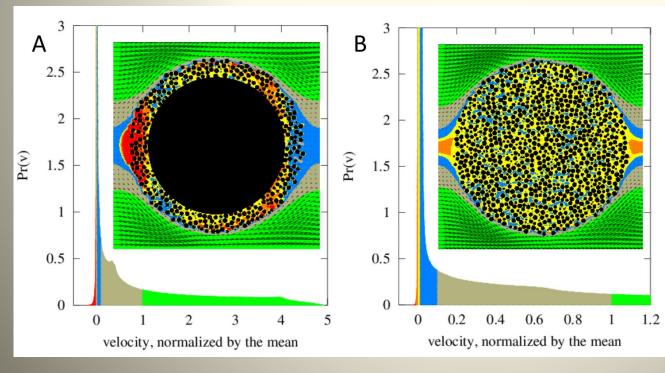

 $\frac{V_p}{V_t} = \frac{1}{1 + \frac{\epsilon_e}{\epsilon'}}$


Some applications of SPP/SEC technology

- Industrial polymer separations
- Fast mAb separations from digests using 2D chromatography in the second dimension
- Isolation of extracellular vesicles (EVs) including exosomes from human plasma
- Nanoparticles: gold, silver, quantum dots
- Organic and biocolloids, liposomes for drug delivery

Gold nanoparticles

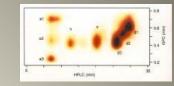
Kroungold Analytical

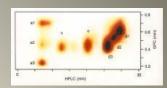


nanoComposix gold nanoparticles with citrated surfaces

Both chromatograms use bare silica Detection (UV) at 520 nm Solvent systems are not obvious surfactants citrate buffers other salts Need multiple columns for wide range Stabilizers are often added

Shear and flow


- 10% of mass flux goes through the SPP particle
- Shear, the spatial derivative of the velocity field, is calculated from previous work.
- Most of the shear field is weak; strongest at the hull; molecules can break just by adsorption¹


¹S. S. Sheiko, F. C. Sun, A. Randall, D. Shirvanyants, M. Rubinstein, H. Lee, K. Matyjaszewski

<u>Adsorption-induced</u> <u>scission of carbon–carbon</u> <u>bonds</u>

Nature 440, (2006) 191-194

Kroungold Analytical

Advantages for SPPs:

- Small diffusion distance, faster kinetics especially for large molecules
- More efficient (plates)
- More plates per unit time (faster)

Advantages for FPPs:

• More resolution – use FPPs when time is not an issue

Wide pore (1000 Å) SPP's

- Flow in the shell (perfusion chromatography)
 - Computational fluid dynamics shows this
 - Really important for high efficiency in large molecule analytical separations – "even faster" kinetics

1. J. Luo, W. Zhou, Z. Su, G. Ma, T. Gu <u>Comparison of fully-porous beads and cored beads in</u> <u>size-exclusion chromatography for protein purification</u> Chem. Eng. Sci. 102 (2013) 99-105.

2. M. R. Schure, R. E. Moran <u>Size exclusion chromatography performed with</u> <u>superficially porous particles</u> J. Chromatogr. A 1480 (2017) 11-19.

3. B. W. J. Pirok, P. Breuer, S. J.M. Hoppe, M. Chitty, E. Welch, T. Farkas, S. van der Wal, R. Peters, P. J. Schoenmakers <u>Size-exclusion chromatography using core-shell particles</u> J. Chromatogr. A 1486 (2017) 96-102.

4. B. M. Wagner, S. A. Schuster, T. J. Shields, B. E. Boyes, T. J. Shields, W. L. Miles,
M. J. Haynes, R. E. Moran, J. J. Kirkland, M. R. Schure <u>Superficially porous particles with</u>
<u>1000 Å pores for large biomolecule HPLC and polymer SEC</u> J. Chromatogr. A 1489 (2017) 75-85.

5. R. S. Maier, M. R. Schure, T. J. Shields, C. M. Wunder, B. M. Wagner <u>Intraparticle and</u> <u>interstitial flow in wide-pore superficially porous and fully porous particles</u>, submitted to Chemical Eng. Science. Acknowledgements

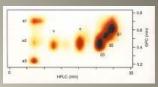
National Institute of Health R44-GM108122-02 NIH National Institutes of Health


Research partners and support: Advanced Materials Technology, Inc.

Universities:

University of Minnesota and Minnesota Supercomputer Institute (MSI)

University of Delaware, Department of Chemical and Biomolecular Engineering



Kroungold Analytical

