macmod

SMARTER CHROMATOGRAPHY

Oligonucleotide Analysis without Ion-Pairing Additives using Novel UHPLC Column Technology

(In Partnership with Sylwia Kowalska and Szymon Bocian at Nicolaus Copernicus University in Poland)

Evosphere® Monodisperse U/HPLC Particle Technology

Evolution of U/HPLC Particles

- Morphology Shape
- Size Reduction
- Purity Less Metals
- Size Distribution Reduction in D90/D10

Ref: Historical Developments in HPLC and UHPLC Column Technology: The Past 25 Years, Dr. Ronald Majors

Particle Size Distribution Comparison

Particle Size Distribution Comparisons

	Monodisperse	Commercial	Commercial
	silica	3u silica - A	3u Silica-B
Mean particle size (d50) *	2.66µm*	2.48µm	2.97µm
SEM particle diameter	3.0µm	2.8µm	3.3µm
D90/10	1.12	1.58	1.61
Pore volume	0.89	0.88	0.89

40% Reduction in D90/10

*Measured by Coulter Counter

SEM Images of Particles Technologies

Polydisperse

Resolution Equation

Simplified Van Deemter Equation $H = A + \frac{B}{u} + Cu$

- H: Height Equivalent to a Theoretical Plate
- A Term: Eddy Diffusion (Multipath Effect)
- **B** Term: Longitudinal Diffusion (Molecular Diffusion)
- C Term: Resistance to Mass Transfer (Mobile Phase to Stationary Phase Transition)

Expanded Van Deemter Equation

$$\mathsf{H} = 2\lambda d_p + \frac{2\gamma D_m}{u} + \left(\frac{\omega d_p^2 u}{D_m} + \frac{R d_f^2 u}{D_s}\right)$$

- H = Plate Height
- λ is packing factor
- d_p is particle diameter
- $\gamma,\,\omega,\,and$ R are constants
- d_f is the film thickness (approaches 0 for LC)

- D_m is the <u>diffusion</u> <u>coefficient</u> of the mobile phase
- d_c is the capillary diameter
- D_s is the diffusion coefficient of the stationary phase.
- u is the linear velocity

Expanded Van Deemter Equation

$$\mathsf{H} = 2\lambda d_p + \frac{2\gamma D_m}{u} + \left(\frac{\omega d_p^2 u}{D_m} + \frac{R d_f^2 u}{D_s}\right)$$

- H = Plate Height
- λ is packing factor
- d_p is particle diameter
- $\gamma,\,\omega,\,and$ R are constants
- d_f is the film thickness (approaches 0 for LC)

- D_m is the <u>diffusion</u> <u>coefficient</u> of the mobile phase
- d_c is the capillary diameter
- D_s is the diffusion coefficient of the stationary phase.
- u is the linear velocity

Visual Representation of Eddy Diffusion ("A Term") Evosphere

Non-Monodisperse

Flow through the column Evosphere vs. FPP

What does this look like chromatographically?

Core-Shell compared to Evosphere MFPP

Core-Shell

Similar Efficiencies

- Greater Loading Capacity
- Scalability to Prep
- Increased Retention

Evosphere

 $SA = \sim 130 m^2/g$

~3X Surface Area

 $SA = 350 \text{ m}^2/\text{g}$

Fortis[®] Evosphere[®] Improves Loading and Increases Retention

Resolution Equation

Goals of Experiment

- Develop a unique approach for Modified and Unmodified Oligonucleotide Analysis by UHPLC/UV/MS which achieves excellent separations without the use of Ion-Pairing Reagents (TEA/HFIP or DIPEA/HFIP).
- Study the impacts of salt concentration, type, and pH on separation capability.

Experimental Conditions

Column: Evosphere Max C18/AR 1.7 µm (2.1 mm x 100 mm)

Mobile Phase - (Unmodified Oligonucleotides) - 10-30% v/v MeOH in 10 minutes Mobile Phase - (Modified Oligonucleotides) - 15-50% v/v MeOH in 10 minutes Temperature - 30° C or 60° C

Flow Rate - 0.3 mL/min

Injection Volume - 0.5 µL

Instrument - Thermo Scientific[™] Vanquish[™] Horizon UHPLC system with DAD Autosampler Temperature - 4°C

UV Wavelength – 260 nm

Unmodified Oligonucleotide Standards

Shortcut	Sequence 5'→3'	Modification type		
UNMODIFIED OLIGOS				
20A	ATCGATCGATCGATCGATCA	-		
20G	ATCGATCGATCGATCGATCG	-		
20C	ATCGATCGATCGATCGATCC	-		
18hA	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	-		

Modified Oligonucleotide Standards

Unmodified and phosphorothioate oligonucleotide standards were purchased from Sigma Aldrich (Dorset, UK). 2'-O-(2-methoxyethyl) and 2'-O-methyl OGNs were obtained from Eurogentec (Seraing, Belgium).

Method Conditions to Optimize

IMPACT OF SALT CONCENTRATION AMMONIUM ACETATE 5, 10, 25, 50 mM IMPACT OF SALT TYPE AMMONIUM ACETATE (AA) AMMONIUM FORMATE (AF) AMMONIUM BICARBONATE (AB) IMPACT OF SALT pH 25mM AA pH 3.0, 4.5, 6.0, 7.5

Impact of Salt Concentration (Amm Ac.)

Impact of Salt Type

Impact of pH on Retention

Peak Shape for DNA20 Oligos

Oligonucleotide Sample - GCCCAAGCTGGCATCCGTCA

Peak Shape for Modified Oligos

Separation of Unmodified Sequence Isomers

Separation of Sequence Isomers

Separation of Sequence Isomers

25mM AA pH=6 12-20 % MeOH in 10min 60 °C

- **1 ATCGATCGA<u>A</u>CGATCGATCG**
- 2 ATCGATCGATAGATCGATCG
- 3 ATCGATCGATCGATCGAACG
- 4 ATCGATCGATCGATCGATCA

Unpurified RNA Oligonucleotide Separation

25mM Amm. Ac. pH 6, 30 °C 5-15% MeOH <u>10min</u>

Magnified Chromatogram

Unpurified RNA Oligonucleotide Separation

25mM Amm. Ac. pH 6 30 °C 5-15% MeOH <u>30min</u>

Magnified Chromatogram

Unpurified RNA Oligonucleotide Separation

mAU

25mM Amm. Ac. pH 6 **Magnified Chromatogram** 2-8% MeOH 30min **60** °C 300 250 14 UCACUUUCAUAAUGCUGG 12 200 desalted after the synthesis 10 150 mAU 8 6 100 4 50 2 0 0 25,5 t [min] 0,5 5,5 10,5 15,5 20.5 10 15 20 5 25 30 0 t [min]

Modified Oligonucleotide Separation

Modified Oligonucleotide Separation

Conclusions and Future Work

- Conclusions:
 - Evosphere MAX C18/AR is a viable candidate to evaluate potential non-ion-pair mobile phase systems for modified and unmodified Single-Stranded Oligonucleotides
- Future Work:
 - Evaluate Evosphere 300 Å C18/AR material for longer Single Stranded Oligonucleotides
 - HILIC for Double Stranded Oligonucleotides
 - Improve Sample Prep Workups
 - Evaluate Evosphere MAX C12 for traditional TEA/HFIP or DIPEA/HFIP ionpairing mobile phases

macmod

SMARTER CHROMATOGRAPHY

Thank you for your time Questions?