

Using novel stationary phase selectivity to address potential NDMA over-quantification due to isobaric interference in the LC-MS/MS analysis of nitrosamines

Matt James¹, Tony Edge¹, Edward Faden² and <u>Geoff Faden²</u>

¹Avantor, VWR International Ltd., Hichrom, 1-3 The Markham Centre, Station Road, Theale, Reading, Berkshire RG7 4PE, UK - ² MAC-MOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

1. Background

- Nitrosamines are potent mutagens and require LC-MS quantification in potentially contaminated drug substances and products.
- LC-MS/MS method developed on an Avantor® ACE® UltraCore C18 column, providing rapid separation and low-level (ppb) quantification of nitrosamines highlighted by FDA and EMA.
- Interference from N,N-dimethylformamide (DMF) has been reported as a potential issue in the quantification of NDMA by LC-HRMS.
- In this work, isobaric interference from DMF was observed by LC-MS/MS.
- The following solutions have been identified:
 - Use of alternative NDMA quantifier transition
 - Use of alternative LC stationary phases

2. Initial Method

- Proposed USP method used as starting point for method development.¹
- 8 nitrosamines and 4 deuterated internal standards.
- Calibration performed according to USP method
- > 1.33-30 ng/mL (20-450 ppb), 0.66-19.8 ng/mL (10-297 ppb) for NDEA
- \triangleright Excellent linearity (r² > 0.997), % accuracy (94.1 105.9 % and % CV (<7.6% RSD)

3. Investigating Isobaric Interference

- DMF was found to co-elute with NDMA.
- DMF Spiking experiments (0-100 ppm) to assess impact on NDMA quantification (1 ng/mL).
- NDMA quantifier (75.0 \rightarrow 43.0) overquantified NDMA in presence of DMF.
- NDMA qualifier transition (75.0 → 58.0) was less affected.

6. Summary and Conclusions

- Rapid LC-MS/MS separation developed using an Avantor® ACE® UltraCore C18 column.
- Excellent linearity, accuracy and precision demonstrated.
- LOD/LOQ values below those sought by regulatory authorities.
- Co-elution of NDMA with DMF resulted in overquantification of NDMA.
- Quantification using the NDMA qualifier transition and the NDEA-d10 internal standard was found to reduce this problem.
- Alternative methods using Avantor® ACE® UltraCore Biphenyl and Avantor® ACE® Excel C18 stationary phases provided enhanced retention and separation of DMF and NMDA and avoid interference.

4. Solution: Chromatographic Separation

- Chromatographic separation of NDMA and DMF is clearly desirable.
- Low retention obtained for NDMA precluded separation from DMF.
- Alternative column selectivities and particle morphologies were screened to separate DMF and NDMA.

5. DMF Screening

- DMF MRM transitions (74.0 \rightarrow 42.0 and 74.0 \rightarrow 30.0) were also established.
- For a sample containing a high concentration of NDMA (30 ng/mL), no response was observed in either transition.
- Highly selective, so can be used to monitor for presence of DMF in real-world samples and safeguard against risk of NDMA overquantification.

